LIST OF TABLES - Table C1-1. Support Services Area RCRA SWMUs, AOCs, and Other Investigation Areas. - Table C3-1. Soil Sampling Results, Metals (Concentrations in mg/kg). - Table C3.1-1. Soil Sampling Results (mg/kg), SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility, Concentrations of Organic Constituents and Cyanide. - Table C3.2-1. Soil Sampling Results (mg/kg), SWMU 4-3: Building 76 Motor Pool Collection Trenches, Concentrations of Organic Constituents. - Table C3.3-1. Soil Sampling Results (mg/kg), SWMU 5-4: Building 77 Plating Shop Floor and Sump, Concentrations of Organic Constituents and Cyanide. - Table C3.4-1. Soil Sampling Results (mg/kg), AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs, Concentrations of Organic Constituents. - Table C3.5-1. Soil Sampling Results (mg/kg), AOC 5-4: Building 77 Sanitary Sewer System, Concentrations of Organic Constituents and Cyanide. - Table C3.6-1. Soil Sampling Results (mg/kg), Chicken Creek Former Poultry Research Station, Concentrations of Organic Constituents. - Table C3.7-1: Soil Sampling Results (mg/kg), Grizzly Electrical Substation, Concentrations of Organic Constituents. - Table C3.8-1. Other Soil Sampling Results (mg/kg), Concentrations of Organic Constituents and Cyanide. - Table C4.3-1. LBNL Groundwater Monitoring Well Results, Volatile Organic Compounds EPA Method 8260 (Concentrations in μg/L). - Table C4.3-2. LBNL Temporary Groundwater Sampling Points, Volatile Organic Compounds EPA Method 8260 (Concentrations in μg/L). - Table C4.3-3. LBNL Hydrauger Sampling, Volatile Organic Compounds EPA Method 8260 (Concentrations in μg/L). - Table C4.3-4. LBNL Slope Stability Well Results, Volatile Organic Compounds EPA Method 8260 (Concentrations in μg/L). - Table C4.4-1. Groundwater Monitoring Well Results, Concentration of Total Petroleum Hydrocarbons and Oil & Grease (Concentrations in µg/L). - Table C4.4-2. Groundwater Monitoring Well Results, Semi-Volatile Organic Compounds (Concentrations in μ g/L). - Table C4.4-3. Polychlorinated Biphenyls (PCBs), Groundwater Monitoring Wells and Temporary Groundwater Sampling Points (Concentrations in μg/L). - Table C4.4-4. Concentration of Metals in Groundwater (Concentrations in μg/L). - Table C4.5-1. Surface Water Sampling Results, Concentrations of Organic Constituents (Concentrations in $\mu g/L$). - Table C4.5-2. Sediment Sampling Results (mg/kg), Concentrations of Organic Constituents. - Table C4.5-3. Surface Water Sampling Results, Metals (Concentrations in μg/L). - Table C4.5-4. Sediment Sampling Results, Metals (Concentrations in mg/kg). Table C1-1 Support Services Area RCRA SWMUs, AOCs and Other Investigation Areas | LBNL Unit
Number | Unit Name | Current
Status | Status Approval Date | Module Section or
RFI Report Where
Unit is Described | |---------------------|---|-------------------|-------------------------|--| | Units Described i | in This Report | | | Module Section | | SWMU 3-6 | B75 Hazardous Waste Handling Facility | NFI | 4/21/2000 (DTSC, 2000b) | C3.1 | | SWMU 4-3 | B76 Motor Generator Pool Collection Trenches and Sump | NFI | 9/30/1998 (DTSC, 1998) | C3.2 | | SWMU 5-4 | B77 Plating Shop Floor and Sump | NFA | 7/5/1996 (DTSC, 1996b) | C3,3 | | AOC 4-1 | B76 Former Gasoline UST | NFA | 7/15/1997 (COB, 1997b) | C3.4 | | AOC 4-2 | B76 Former Diesel UST | NFA | 7/15/1997 (COB, 1997b) | C3.4 | | AOC 4-5 | Solvents in Groundwater South of B76 | (a) | | C4.3.1 | | AOC 5-4 | B77 Sanitary Sewer | NFA | 9/30/1998 (DTSC, 1998) | C3.5 | | (c) | Chicken Creek Former Poultry Research Station | | | C3.6 | | (c) | Grizzly Electrical Substation | | | C3.7 | | <u> </u> | | | | | | Units Described i | n Prior Reports | | | Report | | SWMU 3-1 | B69A Hazardous Waste Handling Facility | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 3-2 | B69 Former Waste Oil UST | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 3-3 | B69 Waste Oil UST | NFA | 7/29/1996 (COB, 1996a) | LBNL, 1994I | | SWMU 3-4 | B69 Former Scrap Yard and Drum Storage Area | NFA | 9/3/1998 (DTSC, 1998) | LBNL, 1995k | | SWMU 3-5 | B69A Storage Area Sump | NFI | 8/25/1997 (DTSC, 1997) | LBNL, 1994I | | SWMU 3-8 | B75D UCB Hazardous Waste Handling Facility | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 4-1 | B76 Former Waste Oil AST | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 4-2 | B76 Oil/Water Separator, Basin, and Sumps | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1994I | | SWMU 4-4 | B76 Present and Former Waste Accumulation Area #1 | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 4-5 | B76 Waste Accumulation Area #2 | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 4-6 | B76 Present and Former Waste Accumulation Area #3 | NFI | 7/5/1996 (DTSC, 1996b) | LBNL, 1994l | | SWMU 4-7 | B76 Paint Shop Waste Recovery Unit | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | SWMU 4-8 | B76 Paint Shop Sink | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | SWMU 5-1 | B42 Scrap Yard | NFA | 5/18/1995 (DTSC, 1995) | LBNL, 1994I | | SWMU 5-2 | B77 Present Waste Water Pre-Treatment Unit | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 5-3 | B77 Future Waste Water Pre-Treatment Unit | NFA | 9/14/1993 (DTSC, 1993a) | LBNL, 1992d | | SWMU 5-5 | B77 Plating Shop Annex | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | SWMU 5-6 | B77 Waste Accumulation Area | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1995k | | SWMU 5-7 | B77G Waste Accumulation Area | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1992d | | SWMU 5-8 | B77 Coolant Recycling Unit | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | SWMU 5-9 | B77 Sand Blasting Room | NFA | 5/18/1995 (DTSC, 1995) | LBNL, 1994I | | SWMU 5-10 | B77 Present and Former Yard Decontamination Areas | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1995k | | AOC 3-1 | B69A Hazardous Materials Storage and Delivery Area | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | AOC 3-2 | B69/75 Fire Drill Area | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1995k | | AOC 4-3 | B76 Present Gasoline UST | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | AOC 4-4 | B76 Present Diesel UST | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | AOC 5-1 | B31 Storage Area | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | AOC 5-2 | B77 Hazardous Materials Storage Area #1 | NFA | 4/6/1994 (DTSC, 1994a) | LBNL, 1992d | | AOC 5-3 | B77 Hazardous Materials Storage Area #2 | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1995k | | AOC 5-5 | B77 Emergency Generator Pad | NFA | 7/5/1996 (DTSC, 1996b) | LBNL, 1995k | NFI = No Further Investigation Status. Unit will be included in the site wide risk assessment. NFA = No Further Action Status. Unit has been approved for exclusion from any additional RCRA corrective action process requirements. Note: Radiological SWMUs and AOCs are not included in this table. ⁽a) = NFA or NFI status is not applicable to groundwater AOCs. ⁽b) = Area where soil samples were collected during the RFI that was not designated a SWMU or AOC. # Table C3-1 Soil Sampling Results Metals (Concentrations in mg/kg) | Şb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | ν | Zn | |-----|------|----------|----------------|--------------------|--|---|--|--|--|---|--|--|---|---|---|---|--| | 5.5 | 19.1 |
323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | | | | | 9 | | 0.2 | · | | | | | 150 | | | | | | | | | | | | | | | | | - | | | | • | | | | | | 5.5 | 5.5 19.1 | 5.5 19.1 323.6 | 5.5 19.1 323.6 1.0 | 5.5 19.1 323.6 1.0 2.7 31 0.39 5400 150 37 | 5.5 19.1 323.6 1.0 2.7 99.6 31 0.39 5400 150 37 210 | 5.5 19.1 323.6 1.0 2.7 99.6 31 0.39 5400 150 37 210 30 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 31 0.39 5400 150 37 210 30 4700 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 31 0.39 5400 150 37 210 30 4700 2900 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 31 0.39 5400 150 37 210 30 4700 2900 400 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 31 0.39 5400 150 37 210 30 4700 2900 400 23 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 119.8 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 1600 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 119.8 5.6 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 1600 390 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 119.8 5.6 1.8 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 1600 390 390 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 119.8 5.6 1.8 7.6 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 1600 390 390 6.3 | 5.5 19.1 323.6 1.0 2.7 99.6 22.2 69.4 16.1 0.4 7.4 119.8 5.6 1.8 7.6 74.3 31 0.39 5400 150 37 210 30 4700 2900 400 23 390 1600 390 390 6.3 550 9 0.2 0.2 150 150 150 150 | SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility | 0075 00 4 4 | 4.0 | Jul-96 | BC | <20 | | 112 | | <2 | 83 | | 4.5 | | - 40 | 1 | | | | | | | | |----------------------|--------------|---------|----|-----|---------|-----|-----|-----|----------|---|------|-----|------|-------|-----|-----|-----|---|--------|-----|-----| | SB75-96-1-4 | | םפ-ונונ | ь | | 5.3 | | <2 | | | | 16 | 38 | <10 | <0.2 | <10 | 102 | <2 | <4 | <20 | 57 | 72 | | SB75-96-1-9 | 9.0 | | | <20 | <2 | 117 | <2 | <2 | 129 | | 26 | 44 | <10 | <0.2 | <10 | 68 | <2 | <4 | <20 | 109 | 59 | | SB75-96-1-14.2 | 14.2 | | | <20 | <2 | 133 | <2 | <2 | 112 | | 17 | 44 | <10 | <0.2 | <10 | 83 | <2 | <4 | <20 | 82 | 79 | | SB75-96-1-19.3 | 19.3 | | | <20 | 2.4 | 96 | <2 | <2 | 66 | | 14 | 36 | <10 | <0.2 | <10 | 91 | <2 | <4 | <20 | 47 | 78 | | SB75-96-1-24.1 | 24.1 | | | <20 | 4.0 | 145 | <2 | <2 | 76 | | 15 | 41 | <10 | <0.2 | <10 | 93 | <2 | <4 | <20 | 49 | 82 | | SB75-96-1-29 | 29.0 | | | <20 | 2.0 | 150 | <2 | <2 | 65 | | 13 | 33 | <10 | 0.24 | <10 | 85 | <2 | <4 | <20 | 44 | 97 | | SB75-96-2-4.7 | 4.7 | | | <20 | 5.8 | 109 | <2 | <2 | 73 | | 15 | 61 | <10 | <0.2 | <10 | 95 | <2 | <4 | <20 | 45 | 94 | | SB75-96-2-9.5 | 9.5 | | | <20 | 9.6 | 146 | <2 | <2 | В0 | | 16 | 43 | <10 | <0.2 | <10 | 111 | <2 | <4 | <20 | 55 | 88 | | SB75-96-2-15.1 | 15.1 | | | <20 | <2 | 118 | <2 | <2 | -113 | | 20 | 38 | <10 | <0.2 | <10 | 66 | <2 | <4 | <20 | 94 | 46 | | SB75-96-2-20 | 20.0 | | | <20 | <2 | 125 | <2 | <2 | 120 | | 22 | 43 | <10 | <0.2 | <10 | 67 | <2 | <4 | <20 | 91 | 55 | | S875-96-3-5.1 | 5.1 | | | <20 | 5.8 | 109 | <2 | <2 | 77. | | 15 | 45 | <10 | <0.2 | <10 | 111 | <2 | <4 | <20 | 49 | 86 | | SB75-96-3-10.1 | 10.1 | | | <20 | 4.2 | 127 | <2 | <2 | 173 | | 23 | 126 | <10 | <0.2 | <10 | 200 | <2 | <4 | <20 | 74 | 118 | | SB75-96-3-15 | 15.0 | | | <20 | 5.3 | 151 | <2 | <2 | 206 | | 30 | 32 | <10 | < 0.2 | <10 | 277 | <2 | <4 | <20 | 78 | 57 | | SB75-96-3-19.5 | 19.5 | | | <20 | 5.4 | 187 | <2 | <2 | 194 | | 22 | 47 | <10 | <0.2 | <10 | 234 | <2 | <4 | <20 | 72 | 69 | | SB75-96-4-6-20.8Comp | 20.8 | | | <20 | 4.4 | 163 | <2 | <2 | 105 | | 19 | 45 | <10 | <0.2 | <10 | 157 | <2 | <4 | <20 | 65 | 79 | | SB75A-96-1-3.8 | 3.8 | Sep-96 | BC | <10 | 1.9 | 129 | <1 | <1 | 114 | | 20 | 35 | <5 | <0.2 | <5 | 66 | 1.4 | <2 | <10 | 103 | 45 | | SB75A-96-1-12.5 | 12.5 | | | <10 | 4.0 | 95 | <1 | <1 | 63 | | 12 | 32 | <5 | <0.2 | <5 | 75 | <1 | <2 | <10 | 49 | 60 | | SB75A-96-1-17.8 | 17.8 | | | <10 | 11.0 | 200 | <1 | <1 | 82 | | 16 | 39 | 5.4 | <0.2 | <5 | 91 | 1.3 | <2 | <10 | 69 | 89 | | SB75A-96-1-22.5 | 22.5 | | | <10 | 8.7 | 199 | <1 | <1 | 83 | | 16 | 51 | 5.3 | <0.2 | <5 | 106 | 1.3 | <2 | <10 | 66 | 88 | | SB75AHW-97-1-1.0 | 1.0 | Jul-97 | BC | <10 | 4.5 | 116 | <1 | <1 | 56 | | 13 | 29 | 5.3 | <0.2 | <5 | 55 | <1 | <2 | <10 | 47 | 56 | | SB75AHW-97-1-3.0 | 3.0 | | | <10 | 4.5 | 162 | <1 | 1.0 | 113 | | 24 | 61 | 6.4 | <0.2 | <5 | 138 | <1 | <2 | <10 | 67 | 93 | | SB75AHW-97-2-1.1 | 1,1 | | | <10 | 5.1 | 134 | <1 | <1 | 62 | | 14 | 39 | 5.3 | <0.2 | <5 | 60 | <1 | <2 | <10 | 62 | 69 | | SB75AHW-97-2-2.6 | 2.6 | | | <10 | 3.5 | 65 | <1 | <1 | 43 | | 13 | 38 | <5 | <0.2 | <5 | 61 | <1 | <2 | <10 | 42 | 56 | | SB75AHW-97-3-1.0 | 1.0 | | | <10 | 4.6 | 138 | <1. | <1 | 48 | | 14 | 39 | 5.1 | <0.2 | <5 | 52 | <1 | <2 | <10 | 51 | 84 | | SB75AHW-97-3-2.6 | 2.6 | | | <10 | 3.3 | 83 | <1 | <1 | 47 | | 13 | 29 | 7.2 | <0.2 | <5 | 52 | <1 | <2 | <10 | 47 | 73 | | SB75AHW-97-4-1.0 | 1.0 | | | <10 | 6.5 | 138 | <1 | <1 | 50 | | 13 | 24 | 7.4 | <0.2 | <5 | 57 | <1 | <2 | <10 | 60 | 56 | | SB75AHW-97-4-2.5 | 2.5 | | | <10 | 2.3 | 41 | <1 | <1 | 27 | | 12 | 39 | 5.7 | <0.2 | <5 | 35 | <1 | <2 | <10 | 37 | 101 | | SB75AHW-97-5-1.0 | 1.0 | | | <10 | 5.1 | 135 | <1 | <1 | 48 | | 12 | 38 | <5 | <0.2 | <5 | 52 | <1 | <2 | <10 | 55 | 72 | | SB75AHW-97-5-2.8 | 2.8 | | | <10 | 6.1 | 134 | <1 | <1 | 64 | | 15 | 48 | 7.0 | <0.2 | <5 | 87 | <1 | <u>~2</u> | <10 | 47 | 71 | | SB75AHW-97-6-1.0 | 1.0 | | | <10 | 2.0 | 84 | <1 | <1 | 68 | | 9.9 | 31 | <5 | <0.2 | <5 | 71 | <1 | <u>- ` </u> | <10 | 42 | 57 | | SB75AHW-97-6-2.9 | 2.9 | | | <10 | 4.4 | 146 | <1 | <1 | 69 | | 13 | 31 | 5.5 | <0.2 | <5 | 89 | <1 | <2 | <10 | 45 | 65 | | SB75AHW-97-7-1.0 | 1.0 | | | <10 | 4.2 | 153 | <1 | <1 | 99 | | 17 | 26 | <5 | <0.2 | <5 | 80 | <1 | <2 | <10 | 79 | 50 | | SB75AHW-97-7-3.0 | 3.0 | | | <10 | 4.9 | 152 | <1 | <1 | 75 | | 14 | 37 | <5 | <0.2 | <5 | 86 | 1.1 | <2 | <10 | 61 | 59 | | | ' | I | | , | ,,,,,,, | | | | <u> </u> | ł | , ,, | | 72 | -U.E | | 00 | | <2 | 1 < 10 | | 28 | Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Мо | Ni | Se | Αg | TI | v | Zn | |--------------------|------------|-----------|----------|-----|------|-------|------|------|------|-------|------|------|------|------|------|-------|------|-----|--|--------------|-------| | Maximum Ba | ckground | d Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | | California | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | | Depth | Sample ID | (ft) | Date | Lab | | | | , | | | | | | | | | | | | | | ! | | SB75AHW-97-8-1.0 | 1.0 | Jul-97 | BC | <10 | 4.7 | 152 | <1 | <1 | 152 | | 28 | 68 | <5 | <0.2 | <5 | 167 | 1.3 | <2 | <10 | 65 | 70 | | Soluble analyses | | | | | | | | | | 0.08 | | | | | | <0.5 | | · | | | | | SB75AHW-97-8-3.2 | 3.2 | _ | | <10 | 1.4 | 216 | <1 | <1 | 130 | | 28 | 44 | <5 | <0.2 | <5 | 77 | 1.1 | <2 | <10 | 108 | 44 | | SB75AHW-97-9-1.3 | 1.3 | _ | | <10 | 5.9 | 132 | <1 | <1 | 55 | | 13 | 50 | 5.9 | <0.2 | <5 | 61 | <1 | <2 | <10 | 61 | 75 | | SB75AHW-97-9-3,0 | 3.0 | ļ | | <10 | 7.4 | 207 | <1 | <1 | 96 | | 16 | 36 | 5.6 | <0.2 | <5 | 117 | <1 | <2 | <10 | 63 | 70 | | SB75AHW-97-9-4.7 | 4.7 | Sep-97 | BC | <10 | 6.8 | 122 | <1 | <1 | 83 | | 14 | 33 | 5.4 | <0.2 | <5 | 108 | <1 | <2 | <10 | 53 | 57 | | SB75AHW-97-10-1.0 | 1.0 | Jul-97 | BC | <10 | 4.8 | 118 | <1 | <1 | 46 | | 11 | 23 | <5 | <0.2 | <5 | 52 | <1 | <2 | <10 | 51 | 50 | | SB75AHW-97-10-3.0 | 3.0 | 1 | ĺ | <10 | 4.5 | 128 | <1 | <1 | 177 | | 27 | 34 | 5.9 | <0.2 | <5 | 272 | <1 | <2 | <10 | 76 | 59 | | Soluble analyses | | ļ | <u> </u> | | | | | | | <0.05 | | | | | | <0.5 | | | | | | | SS-75AHW10-98 REDO | | Jul-98 | BC | | | | | | 69 | 0.1 | | | | | | · | | | | | | | SB75AHW-97-11-1.0 | 1.0 | Jul-97 | EC | <10 | 5.1 | 136 | <1 | <1 | 53 | | 14 | 54 | 6.5 | <0.2 | <5 | 64 | <1 | <2 | <10 | 61 | 65 | | SB75AHW-97-11-2.5 | 2.5 | 1 | | <10 | 5.5 | 148 | <1 | <1 | 49 | | 20 | 60 | 6.5 | <0.2 | <5 | 70 | <1 | <2 | <10 | 55 | 67 | | SB75AHW-97-12-1.0 | 1.0 | 1 | | <10 | 4.6 | 119 | <1 | <1 | 51 | | 12 | 45 | 5.0 | <0.2 | <5 | 52 | <1 | <2 | <10 | 49 | 57 | | SB75AHW-97-12-2.8 | 2.8 | 1 | • | <10 | 3.8 | 87 | <1 | <1 | 54 | | 18 | 37 | 5.5 | <0.2 | <5 | 59 | <1 | <2 | <10 | 50 | 59 | | SB75AHW-97-12-3.2 | 3.2 | | | <10 | 4.9 | 104 | <1 | <1 | 58 | | 15 | 46 | 6.3 | 0.27 | <5 | 78 | <1 | <2 | <10 | 53 | 75 | | SB75AHW-97-13-1.0 | 1.0 | Mar-98 | ВC | <5 | 4.2 | 139 | 0.55 | <0.5 | 46 | | 11 | 29 | 9.6 | <0.2 | <2.5 | 46 | <0.5 | <1 | <5 | 52 | 48 | | SB75AHW-97-13-2.8 | 2.8 | | | <10 | 7.0 | 131 | <1 | <1 | 91 | | 17 | 40 | 13 | <0.2 | <5 | 106 | <1 | <2 | <10 | 67 | 76 | | SB75AHW-97-14-1.1 | 1.1 |] | | <5 | 3.3 | 37 | <0.5 | <0.5 | 29 | | 6.3 | 12 | 5.8 | <0.2 | <2.5 | 31 | <0.5 | <1 | <5 | 24 | 26 | | SB75AHW-97-14-3 | 3.0 | j | | <10 | 6.3 | 118 | <1 | <1 | 77 | | 14 | 45 | 10 | <0.2 | <5 | 91 | <1 | <2 | <10 | 54 | 67 | | SB75AHW-97-15-1.2 | 1.2 | | l | <5 | 4.5 | 110 | 0.61 | <0.5 | 45 | | 12 | 25 | 9.8 | <0.2 | <2.5 | 52 | <0.5 | <1 | <5 | 47 | 40 | | SB75AHW-97-15-3.2 | 3.2 | | | <10 | 2.8 | 181 | <1 | <1 | 91 | | 15 | 37 | 20 | <0.2 | <5 | 100 | 1.1 | <2 | <10 | 62 | 68 | | SB75EHW-97-1-1 | 1.0 | Aug-97 | BC | <10 | 9.1 | 176 | <1 | <1 | 75 | | 15 | 34 | 5.0 | <0.2 | <5 | 107 | <1 | <2 | <10 | 55 | 65 | | SB75EHW-97-1-3.5 | 3.5 | 1 | | <10 | 9.0 | 306 | <1 | <1 | 155 | | 16 | 59 | <5 | <0.2 | <5 | 146
| <1 | <2 | <10 | 68 | 66 | | SB75EHW-97-1-4.3 | 4.3 | Sep-97 | BC | <10 | 14 | 198 | <1 | <1 | 95 | | 19 | 39 | 8.1 | <0.2 | <5 | 154 | <1 | <2 | <10 | 57 | 80 | | SB75EHW-97-2-1.1 | 1.1 | Aug-97 | BC. | <10 | 4.9 | 118 | <1 | <1 | 66 | | 16 | 47 | <5 | <0.2 | <5 | 82 | <1 | <2 | <10 | 48 | 67 | | SB75EHW-97-2-3.5 | 3.5 | 1 | | <10 | 8.5 | 196 | <1 | <1 | 140 | | 19 | 34 | <5 | <0.2 | <5 | 217 | <1 | <2 | <10 | 59 | 62 | | SB75EHW-97-2-5 | 5.0 | Sep-97 | BC | <10 | 10 | 199 | <1 | <1 | 113 | | 18 | 48 | 5.3 | <0.2 | <5 | 189 | <1 | <2 | <10 | 50 | 64 | | SB75EHW-97-3-1.1 | 1.1 | Aug-97 | BC | <10 | 4.7 | 117 | <1 | <1 | 74 | | 14 | 36 | <5 | 0.3 | <5 | 85 | <1 | <2 | <10 | 57 | 78 | | SB75EHW-97-3-2.8 | 2.8 | 1 | | <10 | 6.4 | 200 | <1 | <1 | 216 | | 18 | 37 | <5 | <0.2 | <5 | 181 | <1 | <2 | <10 | 81 | 59 | | SS-75EHW3-98 | | Jul-98 | BC | | | | | | 208 | <0.1 | | | | | | | | | | - | | | SB75FLHW-97-1-0.5 | 0.5 | Aug-97 | BC | <10 | 8.7 | 165 | <1 | <1 | 99 | | 19 | 51 | 20 | <0.2 | <5 | 148 | <1 | <2 | <10 | 61 | 101 | | SB75FLHW-97-1-3.8 | 3.8 | 1 | | <10 | 6.7 | 347 | <1 | <1 ' | 99 (| | 15 | 38 | <5 | 0.22 | <5 | 110 | <1 | <2 | <10 | 55 | 66 | | SB75FLHW-97-2-0.5 | 0.5 | 1 | - | <10 | 7,6 | 276 | <1 | <1 | 72 | | 13 | 45 | 7.3 | <0.2 | <5 | 100 | <1 | <2 | <10 | 56 | 84 | | SB75FLHW-97-2-3 | 3.0 | 1 | [| <10 | 10 | 363 | <1 | <1 | 73 | | 16 | 37 | 7.8 | <0.2 | <5 | 102 | <1 | <2 | <10 | 53 | 80 | | SB75FLHW-97-3-0.5 | 0.5 | 1 | Ī | <10 | 7.1 | 230 | <1 | <1 | 80 | | 17 | 49 | 8.6 | <0.2 | <5 | 101 | <1 | <2 | <10 | 60 | 89 | Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Mo | NI | Se | Aq | TI | v | Zn | |-------------------|------------|-----------|---------|-----|------|-------|-----|-----|------|-------|------|------|------|----------|-----|-------|-----|-----|-----|----------|-------| | Maximum Ba | ckground | d Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | | California | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | | Depth | | | | | | | | | | | | | | | | | | • | | ····· | | Sample ID | (ft) | Date | Lab | | | | | , | | | , | | | ******** | | | | | | | | | SB75FLHW-97-3-3.2 | 3.2 | Aug-97 | BC | <10 | 7.1 | 292 | <1 | <1 | 82 | | 17 | 40 | 8.3 | <0.2 | <5 | 109 | <1 | <2 | <10 | 60 | 79 | | SB75FLHW-97-4-0.5 | 0.5 | | | <10 | 6.7 | 222 | <1 | <1 | 82 | | 16 | 46 | 12 | <0.2 | <5 | 91 | <1 | <2 | <10 | 64 | 107 | | SB75FLHW-97-4-2.6 | 2.6 |] | | <10 | 6.8 | 249 | <1 | <1 | 96 | | 17 | 39 | 6.9 | <0.2 | <5 | 112 | <1 | <2 | <10 | 65 | 77 | | SB75JHW-97-1-1.8 | 1.8 | | | <10 | 6.0 | 183 | <1 | <1 | 88 | | 15 | 40 | 5.3 | <0.2 | <5 | 105 | <1 | <2 | <10 | 58 | 64 | | SB75JHW-97-2-1.3 | 1.3 | Sep-97 | BC | <10 | 6.4 | 155 | <1 | <1 | 75 | | 14 | 39 | <5 | <0.2 | <5 | 93 | <1 | <2 | <10 | 49 | 57 | | SB75LYHW-97-1-0.8 | 8.0 | Aug-97 | BC | <10 | 8.6 | 143 | <1 | <1 | 103 | | 20 | 40 | 5.9 | <0.2 | <5 | 150 | 1.1 | <2 | <10 | 59 | 74 | | SB75LYHW-97-1-2.8 | 2.8 |] | | <10 | 8.9 | 160 | <1 | <1 | 93 | | 18 | 45 | 6.4 | <0.2 | <5 | 127 | 1.1 | <2 | <10 | 68 | 77 | | SB75LYHW-97-2-1.2 | 1.2 | | | <10 | 4.4 | 84 | <1 | <1 | 242 | | 20 | 71 | <5 | <0.2 | <5 | 269 | <1 | <2 | <10 | 53 | 80 | | SB75LYHW-97-2-3.7 | 3.7 | | | <10 | 7.5 | 114 | <1 | <1 | 101 | | 17 | 45 | <5 | <0.2 | <5 | 176 | <1 | <2 | <10 | 51 | 66 | | SS75LYHW2-98 REDO | | Jul-98 | BC | | | | | | 116 | < 0.1 | | | | | | | | | | <u> </u> | | | SB75LYHW-97-3-1 | 1.0 | Aug-97 | BC | <10 | 4.5 | 132 | <1 | <1 | 67 | | 13 | 49 | <5 | <0.2 | <5 | 88 | <1 | <2 | <10 | 47 | 80 | | SB75LYHW-97-3-2.5 | 2.5 | | | <20 | 9.3 | 167 | <2 | <2 | 75 | | 17 | 35 | <10 | <0.2 | <10 | 130 | <2 | <4 | <20 | 48 | 62 | | SB75LYHW-97-4-1.2 | 1.2 | | | <10 | 6.4 | 177 | <1 | <1 | 82 | | 20 | 39 | 6.0 | <0.2 | <5 | 111 | <1 | <2 | <10 | 56 | 69 | | SB75LYHW-97-4-2 | 2.0 | | | <10 | 3.3 | 71 | <1 | <1 | 61 | | 12 | 31 | <5 | <0.2 | <5 | 94 | <1 | <2 | <10 | 33 | 50 | | SB75LYHW-97-5-1 | 1.0 | | | <10 | 6.5 | 94 | <1 | <1 | 82 | | 15 | 41 | 5.3 | <0.2 | <5 | 110 | <1 | <2 | <10 | 50 | 68 | | SB75LYHW-97-5-2.7 | 2.7 | | | <10 | 8.1 | 161 | <1 | <1 | В4 | | 16 | 41 | 5.2 | <0.2 | <5 | 106 | <1 | <2 | <10 | 64 | 70 | | SB75LYHW-97-6-0.7 | 0.7 | | | <10 | 6.2 | 108 | <1 | <1 | 72 | | 14 | 38 | <5 | <0.2 | <5 | 98 | <1 | <2 | <10 | 49 | 69 | | SB75LYHW-97-6-2.8 | 2.8 | | | <10 | 6.6 | 123 | <1 | <1 | 79 | | 16 | 53 | 8.2 | <0.2 | <5 | 108 | <1 | <2 | <10 | 53 | 84 | | SB75YHW-97-1-0.5 | 0.5 |] | | <10 | 4.0 | 125 | <1 | <1 | 50 | | 11 | 42 | <5 | <0.2 | <5 | 69 | <1 | <2 | <10 | 39 | 67 | | SB75YHW-97-1-3.2 | 3.2 | | | <10 | 6.2 | 170 | <1 | <1 | 85 | | 15 | 48 | 6.0 | <0.2 | <5 | 95 | <1 | <2 | <10 | 64 | 84 | | SB75YHW-97-2-0.8 | 0.8 |] | | <10 | 6.7 | 195 | <1 | <1 | 76 | | 15 | 43 | 6.2 | <0.2 | <5 | 98 | <1 | <2 | <10 | 58 | 70 | | SB75YHW-97-2-3 | 3.0 | | | <10 | 4.8 | 126 | <1 | <1 | 77 | | 14 | 49 | 5.8 | <0.2 | <5 | 94 | <1 | <2 | <10 | 42 | 77 | | SB75YHW-97-3-0.8 | 0.8 | | | <10 | 7.3 | 299 | <1 | <1 | 93 | | 17 | 42 | 6.0 | <0.2 | <5 | 123 | <1 | <2 | <10 | 55 | 73 | | SB75YHW-97-3-3 | 3.0 | | | <10 | 4.8 | 77 | <1 | <1 | 46 | | 8.6 | 19 | <5 | <0.2 | <5 | 49 | <1 | <2 | <10 | 33 | 40 | | SB75YHW-97-4-0.7 | 0.7 | | | <10 | 11 | 221 | <1 | <1 | 92 | | 17 | 44 | 6.7 | <0.2 | <5 | 137 | 1.2 | <2 | <10 | 53 | 79 | | SB75YHW-97-4-2.8 | 2.8 | | | <10 | 9.8 | 392 | <1 | <1 | 100 | | 17 | 46 | 6.3 | <0.2 | <5 | 124 | <1 | <2 | <10 | 66 | 77 | | SB75YHW-97-5-0.8 | 0.8 | | | <10 | 5.6 | 154 | <1 | <1 | 72 | | 15 | 49 | 5.4 | <0.2 | <5 | 101 | 1.0 | <2 | <10 | 50 | 79 | | SB75YHW-97-5-3 | 3.0 |] | | <10 | 9.2 | 316 | <1 | <1 | 80 | | 16 | 54 | 5.8 | <0.2 | <5 | 119 | <1 | <2 | <10 | 49 | 79 | | SB75YHW-97-6-2 | 2.0 | 1 | | <10 | 4.5 | 16 | <1 | <1 | 30 | | 6.8 | 8.0 | <5 | <0.2 | <5 | 28 | <1 | <2 | <10 | 21 | 21 | | SB75YHW-97-6-3.2 | 3.2 | | | <10 | 4.7 | 32 | <1 | <1 | 31 | | 6.6 | 16 | <5 | <0.2 | <5 | 35 | <1 | <2 | <10 | 22 | 27 | | SB75YHW-97-7-1.2 | 1.2 |] | | <10 | 7.2 | 190 | <1 | <1 | 75 | | 16 | 43 | 5.9 | <0.2 | <5 | 107 | 1.3 | <2 | <10 | 51 | 78 | | SB75YHW-97-7-3 | 3.0 |] | | <10 | 15 | 170 | <1 | <1 | 114 | | 19 | 55 | 6.8 | <0.2 | <5 | 158 | 1.4 | <2 | <10 | 58 | 83 | | SB75YHW-97-8-1.3 | 1.3 | 1 | İ | <10 | 9.2 | 147 | <1 | <1 | 101 | | 16 | 53 | 6.1 | <0.2 | <5 | 128 | 1.1 | <2 | <10 | 58 | 79 | | SB75YHW-97-8-3.5 | 3.5 | 1 | | <10 | 10 | 164 | <1 | <1 | 90 | | 20 | 37 | 6.7 | <0.2 | <5 | 143 | 1.2 | <2 | <10 | 54 | 70 | | SB75YHW-97-8-4.3 | 4.3 | Sep-97 | BC | <10 | 18 | 258 | <1 | <1 | 108 | | 17 | 36 | 5.8 | <0.2 | <5 | 178 | <1 | <2 | <10 | 47 | 63 | | S875YHW-97-8-5.4 | 5.4 |] | | <10 | 10 | 182 | <1 | <1 | 204 | | 19 | 32 | <5 | <0.2 | <5 | 216 | <1 | ~2 | <10 | 69 | 54 | ModuleC Soil Metals 9/22/00 Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Mo | Ni | Se | Ag | TI | ٧ | Zn | |--------------------------|-----------|----------|------|------|------|-------|------|------|----------|------|------|------|------|------|------|----------|------|------|-----|------|---| | Maximum Bac | | | | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22,2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | C | alifornia | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | | Depth | *************************************** | | Sample ID | (ft) | Date | Lab | | | | | | · | | , | | | | | | | | | | | | SB75YSWR-97-1-2.6 | 2.6 | Oct-97 | BC | <20 | 7.4 | 258 | <2 | <2 | 65 | | 17 | 34 | <10 | 0.24 | <10 | 95 | <2 | <4 | <20 | 56 | 68 | | SB75YSWR-97-1-3.6 | 3.6 | _ | | <10 | 14 | 293 | <1 | <1 | 93 | | 17 | 54 | 6.3 | <0.2 | <5 | 156 | 1.5 | <2 | <10 | 54 | 82 | | SB75YSWR-97-2-2.5 | 2.5 | 1 | | <10 | 9.5 | 188 | <1 | <1 | 131 | | 16 | 45 | <5 | <0.2 | <5 | 121 | <1 | <2 | <10 | 65 | 71 | | SB75YSWR-97-2-3.5 | 3.5 | | | <10 | 8.3 | 165 | <1 | <1 | 90 | | 17 | 71 | 6.7 | <0.2 | <5 | 114 | 1.3 | <2 | <10 | 57 | 86 | | SB75A-99-38Comp | | Dec-99 | EC | <5 | 3.5 | 120 | <0.5 | <0.5 | 100 | | 13 | 30 | 3 | 0.28 | <2.5 | 140 | <2.5 | <4 | <5 | 55 | 42 | | MW75-96-20-5.2 | 5.2 | Oct-96 | BC | <0.9 | <1 | 8.4 | <0.5 | <1 | <1 | | <5 | <1 | <5 | <0.2 | <4 | <5 | <1 | <0.4 | <4 | 1.8 | <5 | | MW75-96-20-11 | 11.0 | Feb-97 | EC | <10 | 3.2 | 161 | <1 | <1 | 107 | <0.1 | 21 | 24 | <5 | <0.2 | <5 | 61 | <1 | <2 | <10 | 90 | 48 | | MW75-96-20-20.5 | 20.5 | | | <10 | 11 | 152 | <1 | <1 | 71 | | 14 | 31 | 5.0 | <0.2 | <5 | 85 | <1 | <2 | <10 | 54 | 66 | | MW75-96-20-30.5 | 30.5 | | | <10 | 6.3 | 206 | <1 | <1 | 72 | | 15 | 37 | 6.1 | <0.2 | <5 | 89 | <1 | <2 | <10 | 55 | 70 | | MW75-96-20-40.2 | 40.2 | | | <10 | 2.9 | 167 | <1 | <1 | 60 | | 12 | 25 | <5 | <0.2 | <5 | 62 | <1 | <2 | <10 | 57 | 53 | | MW75-96-20-50.8 | 50.8 | | | <10 | 6.9 | 242 | <1 | <1 | 83 | | 16 | 46 | 7.5 | <0.2 | <5 | 91 | <1 | <2 | <10 | 53 | 68 | | MW75-98-14Comp | | Sep-98 | BC | <10 | 7.3 | 231 | <1 | <1 | 113 | 0.3 | 18 | 39 | 9.2 | <0.2 | <5 | 166 | <1 | <2 | <10 | 64 | 67 | | MW75-98-15Comp | | | | <20 | 6.5 | 356 | <2 | <2 | 93 | | 16 | 41 | <10 | <0.2 | <10 | 142 | <2 | <8 | <20 | 62 | 63 | | MW75-99-4-3.0 | 3.0 | Jul-99 | BC | <10 | 10 | 123 | <1 | <1 | 117 | <0.1 | 17 | 32 | <5 | <0.2 | <5 | 168 | <1 | <2 | <10 | 57 | 60 | | MW75-99-4-3.0 (WET TEST) | 3.0 | | | | | | | | <0.1mg/L | | | | | | | <0.5mg/L | | | | | | | MW75-99-4-4.5 | 4.5 | | | <10 | 17 | 114 | <1 | <1 | 97 | | 17 | 30 | 5 | <0.2 | <5 | 154 | 1,1 | <2 | <10 | 60 | 66 | | MW75-99-4-6.5 | 6.5 |] | |
<10 | 12 | 140 | <1 | <1 | 97 | | 17 | 30 | <5 | <0.2 | <5 | 192 | 1.2 | <2 | <10 | 63 | 63 | | MW75-99-4-9.2 | 9.2 | | | <10 | 5.5 | 307 | <1 | <1 | 97 | | 17 | 34 | <5 | <0.2 | <5 | 154 | <1 | <2 | <10 | 56 | 57 | | MW75-99-4-13.5 | 13.5 | | | <10 | 2.3 | 291 | <1 | <1 | 86 | | 14 | 36 | <5 | <0.2 | <5 | 120 | <1 | <2 | <10 | 56 | 55 | | MW75-99-4-18.8 | 18.8 | | | <10 | 6.4 | 226 | 1.0 | <1 | 74 | | 14 | 34 | 5.3 | <0.2 | <5 | 132 | 1.3 | <2 | <10 | 71 | 74 | | MW75-99-4-28.5 | 28.5 | } | | <10 | 1.2 | 98 | <1 | <1 | 121 | | 13 | 27 | <5 | <0.2 | <5 | 154 | 1.0 | <2 | <10 | 52 | 49 | | MW75-99-4-33.7 | 33.7 | | | <10 | 1.7 | 149 | < 1 | <1 | 113 | | 13 | 24 | <5 | <0.2 | <5 | 142 | <1 | <2 | <10 | 63 | 43 | | BS-MW75-99-6-Comp |] | Nov-99 | BC | <25 | 9.3 | 340 | <2.5 | <2.5 | 91 | | 18 | 34 | <12 | <0.2 | <12 | 150 | <2.5 | <5 | <25 | 68 | 74 | | BS-MW75-99-7-Comp | | Nov-99 | BC | <5 | 3.6 | 180 | 0.56 | <0.5 | 70 | | 20 | 38 | 4.1 | <0.2 | <2.5 | 110 | <2.5 | <1 | <5 | 59 | 54 | | BS-MW75-99-8-Comp | | Dec-99 | BC | <10 | 12.0 | 290 | <1 | <1 | 91 | | 15 | 100 | 5.8 | <0.2 | <5 | 130 | <2 | <2 | <10 | 82 | 93 | | MW91-4-S1 | 5.0 | Nov-91 | a | <2 | 1 | 150 | 0.6 | <0.2 | 74 | | 15 | 35 | 14 | <0.2 | <0.6 | 100 | <2 | <0.2 | 10 | 57 | 67 | | MW91-4-S2 | 10.0 |] | | <2 | 2 | 140 | 0.7 | <0.2 | 88 | | 16 | 48 | 16 | <0.2 | <0.6 | 97 | <2 | <0.2 | 14 | 62 | 84 | | MW91-4-S3 | 18.5 | | | <2 | <1 | 220 | 0.8 | <0.2 | 85 | | 19 | 26 | 14 | <0.2 | <0.6 | 76 | <2 | <0.2 | 11 | 71 | 49 | | MW91-4-S4 | 23.5 | | | <2 | 1 | 140 | 0.8 | <0.2 | 77 | | 17 | 29 | 16 | <0.2 | <0.6 | 96 | <2 | <0.2 | 16 | 62 | 77 | | MW91-4-S5 | 34.5 | _ | | <2 | 1 | 220 | 0.7 | 0.3 | 62 | | 15 | 29 | 15 | <0.2 | <0.6 | 100 | <2 | <0.2 | 4 | 48 | 68 | | MW91-4-S6 | 44.5 | | | <2 | <1 | 170 | 0.6 | 0.3 | 60 | | 15 | 36 | 13 | <0.2 | <0.6 | 88 | <2 | <0.2 | 10 | 42 | 70 | | MW91-4-S7 | 54.5 | 1 | | <2 | <1 | 240 | 0.6 | <0.2 | 65 | | 14 | 30 | 13 | <0.2 | <0.6 | 84 | <2 | <0.2 | 4 | 53 | 66 | # Table C3-1 Soil Sampling Results Metals (Concentrations in mg/kg) | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | V | Zn | |-----------------------------------|-----|------|-------|-----|-----|------|------|------|------|------|-----|-----|-------|-----|-----|-----|------|-------| | Maximum Background Concentrations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | USEPA Region 9 PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | California Modifled PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | Depth | | | | | | | | | | | | | | | | ., | | | | Sample ID (ft) Date Lab | | | | | | | | | | | | | | | | | | | SWMU 4-3: Building 76 Motor Pool Collection Trenches AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs | SS76-94-01-6 | 6 | Juл-94 | BC | <5 | 3.4 | 94 | <0.5 | <0.5 | 42 | | 9 | 44 | 8.1 | <0.2 | <2.5 | 51 | <0.5 | <1 | <5 | 40 | 66 | |-----------------|------|--------|-----|----|------|-----|------|------|-----|-----|-----|----|------|------|------|-----|------|----|-----|----|----| | SS76-94-01-11 | 11 | | | <5 | 1,9 | 66 | <0.5 | <0.5 | 111 | | 21 | 51 | 4.4 | <0.2 | <2.5 | 161 | <0.5 | <1 | <5 | 65 | 64 | | SS76-94-01-18 | 18 |] | | <5 | 3.4 | 89 | <0.5 | <0.5 | 81 | | 16 | 72 | 6.7 | <0.2 | <2.5 | 118 | <0.5 | <1 | <5 | 55 | 82 | | SS76-94-01-21 | 21 |] | | <5 | 0.95 | 94 | <0.5 | 0.54 | 56 | | 15 | 49 | 4.9 | <0.2 | <2.5 | 73 | <0.5 | <1 | <5 | 46 | 67 | | SS76-94-02-6 | 6 | 1 | | <5 | 6.1 | 70 | <0.5 | <0.5 | 30 | | 7.5 | 25 | 11 | <0.2 | <2.5 | 55 | <0.5 | <1 | <5 | 20 | 56 | | SS76-94-02-16 | 16 | 1 | | <5 | 0.75 | 76 | <0.5 | <0.5 | 55 | | 12 | 44 | 4.6 | <0.2 | <2.5 | 74 | <0.5 | <1 | <5 | 49 | 67 | | SS76-94-02-20.5 | 20.5 | 1 | | <5 | 2.9 | 90 | <0.5 | <0.5 | 56 | | 11 | 51 | 4.6 | <0.2 | <2.5 | 68 | <0.5 | <1 | <5 | 40 | 65 | | SS76-94-03-5 | 5 |] | | <5 | 1.6 | 120 | <0.5 | <0.5 | 110 | | 24 | 53 | 4.5 | <0.2 | <2.5 | 156 | <0.5 | <1 | <5 | 98 | 63 | | SS76-94-03-10 | 10 |] | | <5 | 2.2 | 98 | <0.5 | <0.5 | 243 | | 26 | 45 | 5.2 | <0.2 | <2.5 | 262 | <0.5 | <1 | <5 | 75 | 59 | | SS76-94-03-15.5 | 15.5 | | | <5 | 1.8 | 98 | <0.5 | <0.5 | 151 | | 20 | 39 | 4.1 | <0.2 | <2.5 | 188 | <0.5 | <1 | <5 | 63 | 59 | | SS76-94-03-20.5 | 20.5 | | | <5 | 3.2 | 108 | <0.5 | <0.5 | 84 | | 16 | 38 | 4.0 | <0.2 | <2.5 | 103 | <0.5 | <1 | <5 | 50 | 63 | | SB76-95-1-11 | 11 | Jun-95 | BC. | <5 | 1.9 | 104 | 0.50 | <0.5 | 113 | | 19 | 40 | 4.6 | <0.2 | <2.5 | 165 | <0.5 | <1 | <5 | 65 | 54 | | SB76-95-1-21 | 21 | | | <5 | 3.0 | 109 | <0.5 | 0.55 | 62 | | 12 | 43 | 5.9 | <0.2 | <2.5 | 79 | <0.5 | <1 | <5 | 36 | 60 | | SB76-95-2-10.4 | 10.4 | | | <5 | 2.4 | 56 | <0.5 | <0.5 | 253 | ND. | 22 | 50 | <2.5 | <0.2 | <2.5 | 294 | <0.5 | <1 | 7.1 | 81 | 60 | | SB76-95-2-20.7 | 20.7 | | | <5 | 16 | 102 | <0.5 | <0.5 | 54 | | 13 | 40 | 3.6 | <0.2 | <2.5 | 78 | <0.5 | <1 | 5.4 | 38 | 61 | | SB76-95-3-10.5 | 10.5 | | | <5 | 1.8 | 64 | <0.5 | <0.5 | 77 | | 16 | 30 | 5.0 | <0.2 | 4.6 | 98 | <0.5 | <1 | <5 | 50 | 51 | | SB76-95-3-20.7 | 20.7 | | | <5 | 0.79 | 69 | <0.5 | <0.5 | 45 | | 11 | 33 | 5.4 | <0.2 | <2.5 | 72 | <0.5 | <1 | <5 | 29 | 57 | | SB76-95-4-10.3 | 10.3 | | | <5 | 0.72 | 77 | <0.5 | <0.5 | 87 | | 16 | 29 | 3.6 | <0.2 | <2.5 | 96 | <0.5 | <1 | <5 | 59 | 46 | | SB76-95-4-15.6 | 15.6 | | | <5 | 2.4 | 117 | <0.5 | <0.5 | 98 | | 13 | 41 | 5.3 | <0.2 | <2.5 | 171 | <0.5 | <1 | <5 | 42 | 60 | AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs | BS76-92-25-5.5 | 5.5 | Sep-92 | С | <1 | 12 | 81 | 0.17 | <0.05 | 47 | 14 | 34 | 2 | <0.05 | 1 | 24 | 3 | <0.25 | <2 | 33 | 51 | |----------------|------|--------|---|-----|-------|-----|------|--------|----|--------|----|------|--------|-------|-----|------|--------|-----------|----|-----| | BS76-92-25-16 | 16 | | | 1.6 | 6.9 | 71 | 0.37 | <0.05 | 26 | 9.4 | 26 | 2 | <0.05 | <0.25 | 67 | 2 | <0.25 | <2 | 21 | 110 | | BS76-92-25-26 | 26 | | | <1 | 7.5 | 190 | 0.14 | < 0.05 | 48 | 10 | 39 | 2.3 | < 0.05 | <0.25 | 82 | 0.6 | < 0.25 | <2 | 26 | 55 | | B576-92-25-36 | 36 | : | | <1 | 7.1 | 110 | 0.16 | 2.5 | 42 | 10 | 27 | 2.5 | 0.06 | 0.35 | 66 | <0.5 | <0.25 | <2 | 27 | 67 | | BS76-93-7-5.5 | 5.5 | Aug-93 | С | 3.0 | <0.25 | 30 | 0.10 | 2.1 | 49 | 15 | 34 | <0.5 | 0.06 | 3.2 | 130 | <0.5 | 1.0 | <2 | 21 | 26 | | BS76-93-7-15.5 | 15.5 | | | <1 | <0.25 | 54 | 0.28 | 3.0 | 38 | 8.8 | 42 | <0.5 | 0.06 | 3.7 | 130 | <0.5 | 1.1 | <2 | 42 | 58 | | BS76-93-7-26 | 26 |] | | <1 | 5.0 | 120 | 0.29 | 4.0 | 43 | 16 | 58 | 5.4 | 0.12 | 3.3 | 91 | <0.5 | 2.0 | <2 | 49 | 66 | | BS76-93-7-35.5 | 35.5 | | | 3.1 | 13 | 180 | 0.36 | 2.9 | 34 |
13 | 25 | <0.5 | <0.05 | 5.7 | 68 | <0.5 | 1.8 | <u>-2</u> | 20 | 43 | Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Mo | Ni | Se | Aq | Ti | V | Zn | |-------------------------|------------|----------|---------|-----|------|-------|-----|-----|------|------|------|------|------|------|-----|-------|-----|---|-----|------|-------| | Maximum B | ackground | Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | | California | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | *************************************** | | | - | | 1 | Depth | Sample ID | (ft) | Date | Lab | BS-W76-97-3-16-36comp | 16-36 | Feb-97 | BC | <10 | 8.2 | 118 | <1 | <1 | 120 | <0.1 | 20 | 34 | 5.8 | <0.2 | <5 | 187 | <1 | <2 | <10 | 60 | 81 | | BS-W76-97-4-16-38.5comp | 16-38.5 | | | <10 | 3.1 | 124 | <1 | <1 | 128 | <0.1 | 19 | 36 | <5 | <0.2 | <5 | 152 | <1 | <2 | <10 | 77 | 60 | SWMU 5-4: Building 77 Plating Shop Floor and Sump | BS77Plate-94-01-2 | 2 | Jun-94 | BC | <5 | 7.4 | 166 | 0.62 | < 0.5 | 63 | | 17 | 27 | 7.5 | <0.2 | <2.5 | 90 | <0.5 | <1 | <5 | 56 | 100 | |----------------------|------|----------|----|-----|------|-----|------|-------|------|-----|------|-----|------|------|------|-----|------|-----|-----|-----|-----| | BS77Plate-94-01-6.5 | 6.5 | 1 | | <5 | 7.6 | 199 | 0.61 | <0.5 | 76 | | 15 | 43 | 7.5 | <0.2 | <2.5 | 88 | <0.5 | <1 | <5 | 56 | 86 | | BS77Plate-94-01-10.5 | 10.5 | 1 | | <5 | 8.7 | 608 | 0.56 | <0.5 | 74 | | 15 | 44 | 7.1 | <0.2 | <2.5 | 91 | <0.5 | <1 | <5 | 54 | 89 | | BS77Plate-94-02-1 | 1 | | | <5 | 6.8 | 162 | 0.53 | <0.5 | 87 | | 16 | 44 | 6.8 | <0.2 | <2.5 | 95 | <0.5 | < 1 | <5 | 54 | 81 | | BS77Plate-94-02-3 | 3 | | | <5 | 7.1 | 470 | <0.5 | <0.5 | 72 | | 13 | 65 | 6.6 | <0.2 | <2.5 | 87 | <0.5 | <1 | <5 | 51 | 91 | | BS77Plate-94-02-6 | 6 | | | <5 | 7.1 | 261 | <0.5 | < 0.5 | 72 | | 14 | 48 | 5.9 | <0.2 | <2.5 | 98 | <0.5 | <1 | <5 | 45 | 90 | | BS77Plate-94-02-8 | 8 |] | | <5 | 8.9 | 320 | <0.5 | < 0.5 | . 70 | | 13 | 39 | 5.7 | 3.7 | <2.5 | 83 | 2.3 | <1 | <5 | 47 | 87 | | BS77Plate-94-03-1 | 1 |] | | <5 | 3.3 | 267 | 0.69 | < 0.5 | 52 | | 8.5 | 244 | 5.7 | <0.2 | <2.5 | 50 | <0.5 | <1 | <5 | 40 | 158 | | BS77Plate-94-03-3 | 3 |] | | <5 | 15.0 | 94 | 0.58 | <0.5 | 61 | | 16 | 46 | 7.7 | <0.2 | <2.5 | 86 | <0.5 | <1 | <5 | 58 | 88 | | BS77Plate-94-03-6 | 6 | | | <5 | 8.5 | 137 | 0.58 | <0.5 | 72 | | 14 | 31 | 7.5 | <0.2 | <2.5 | 82 | <0.5 | <1 | <5 | 59 | 82 | | BS77Plate-94-03-8 | 8 |] | | <5 | 6.6 | 175 | <0.5 | <0.5 | 71 | | 12 | 31 | 5.0 | <0.2 | <2.5 | 73 | <0.5 | <1 | <5 | 50 | 69 | | BS77Plate-94-04-1 | 1 |] | | <5 | 5.2 | 169 | <0.5 | <0.5 | 56 | | 12 | 33 | 4.8 | <0.2 | <2.5 | 81 | <0.5 | <1 | <5 | 49 | 71 | | BS77Plate-94-04-3 | 3 |] | | <5 | 6.4 | 103 | 0.58 | <0.5 | 78 | • | 14 | 45 | 6.9 | <0.2 | <2.5 | 89 | <0.5 | <1 | <5 | 53 | 83 | | BS77Plate-94-04-6 | -6 |]
| | <5 | 7.1 | 118 | 0.58 | <0.5 | 78 | | 15 | 43 | 7.5 | <0.2 | <2.5 | 91 | <0.5 | <1 | <5 | 57 | 86 | | BS77Plate-94-04-8 | - 8 |] | | <5 | 6.9 | 192 | 0.54 | <0.5 | 75 | | 14 | 32 | 6.6 | <0.2 | <2.5 | 88 | <0.5 | <1 | <5 | 52 | 75 | | BS77Plate-94-05-1 | 1 |] | | <5 | 1.9 | 111 | <0.5 | <0.5 | 93 | | 19 | 42 | <2.5 | <0.2 | <2.5 | 41 | <0.5 | <1 | <5 | 80 | 43 | | BS77Plate-94-05-3 | 3 |] | | <5 | 2.3 | 171 | 0.52 | <0.5 | 77 | | 22 | 80 | 3.2 | <0.2 | <2.5 | 57 | <0.5 | <1 | <5 | 70 | 100 | | BS77Plate-94-05-6 | - 6 | | | <5 | 5.8 | 84 | <0.5 | <0.5 | 61 | | 13 | 35 | 5.5 | <0.2 | <2.5 | 82 | <0.5 | <1 | <5 | 46 | 77 | | BS77Plate-94-05-9 | 9 | | | <5 | 7.6 | 133 | 0.56 | <0.5 | 74 | | 15 | 36 | 6.8 | <0.2 | <2.5 | 95 | <0.5 | <1 | <5 | 57 | 81 | | SS-77PIExc-98-1-1.8 | 1.8 | Dec-98 | BC | <10 | 6.7 | 135 | <1 | <1 | 74 | 0.9 | 15 | 35 | 13 | <0.2 | <5 | 95 | <1 | <2 | <10 | 53 | 65 | | SS-77PIExc-98-2-2 | 2 | | | <10 | 8.7 | 273 | <1 | <1 | 70 | 0.1 | 13 | 32 | 9.8 | <0.2 | <5 | 102 | <1 | <2 | <10 | 52 | 79 | | SS-77-99-1-1.7 | 1.7 | Dec-99 | BC | <5 | 0.9 | 13 | 0.58 | <0.5 | 4.0 | | <2.5 | 4.6 | <2.5 | <0.2 | <2.5 | 6.4 | <0.5 | <1 | <5 | 4.2 | 9.4 | | SS-77-99-3-1.7 | 1.7 |] | | <10 | 1.0 | 92 | <1 | <1 | 67 | | 20 | 42 | <5 | <0.2 | <5 | 72 | <2 | <2 | <10 | 79 | 57 | | SS-77-99-4-1.6 | 1.6 |] | | <5 | 9.1 | 87 | 0.93 | <0.5 | 25 | | 4.7 | 20 | 5.1 | <0.2 | <2.5 | 36 | <1 | <1 | <5 | 19 | 35 | | SS-77-99-5-1.7 | 1.7 | | | <5 | 5.2 | 94 | 0.96 | <0.5 | 61 | | 13 | 46 | 5.5 | <0.2 | <2.5 | 82 | <0.5 | <1 | <5 | 57 | 64 | | SS-77-00-2-1.4 | 1.4 | Арг-00 | BC | <5 | 2.7 | 42 | <0.5 | <0.5 | 36 | | 17 | 54 | <2.5 | <0.2 | 3.1 | 47 | 0.5 | <1 | <5 | 74 | 32 | | SS-77-00-3-1.5 | 1.5 | <u> </u> | | <5 | 4.4 | 99 | <0.5 | .<0.5 | 37 | | 11 | 28 | 7.1 | <0.2 | <2.5 | 46 | <0.5 | <1 | <5· | 44 | 42 | | SS-77-00-4-1.5 | 1.5 | | | <10 | 3.0 | 46 | <1 | 1.4 | 41 | 1 | 13 | 37 | 7.0 | <0.2 | <5 | 55 | <1 | <2 | <10 | 43 | 56 | | SS-77-00-5-1.3 | 1.3 |] | | <10 | 4.0 | 100 | <1 | 1.7 | 85 | | 12 | 46 | 5.1 | <0.2 | <5 | 92 | <1 | <2 | <10 | 50 | 63 | | SS-77-00-6-1.5 | 1.5 | | | <10 | 6.2 | 230 | <1 | <1 | 74 | | 16 | 37 | 5.8 | <0.2 | <5 | 100 | <1 | <2 | <10 | 50 | 67 | | SS-77-00-7-1.8 | 1.8 | | | <10 | 5.5 | 240 | <1 | <1 | 81 | | 17 | В1 | <5 | <0.2 | <5 | 120 | <1 | <2 | <10 | 62 | 88 | Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Mo | NI | Se | Ag | TI | V | Zn | |-----------------|------------|-----------|---------|-----|------|-------|-----|-----|------|------|------|------|------|------|-----|-------|-----|-----|-----|------|-------| | Maximum | Background | d Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6,3 | 550 | 23000 | | | California | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | | Depth | | | | | | | | | | | | | | | | • | | - | | | | Sample ID | (ft) | Date | Lab | SS-77-00-8-1.8 | 1.8 | Apr-00 | BC | <10 | 3.6 | 270 | <1 | <1 | 83 | | 19 | 73 | 5.4 | <0.2 | <5 | 130 | < 1 | <2 | <10 | 53 | 84 | | SS-77-00-9-1.9 | 1.9 | | | <10 | 9.5 | 230 | <1 | <1 | 68 | | 15 | 33 | 5.8 | <0.2 | <5 | 96 | <1 | <2 | <10 | 55 | 95 | | SS-77-00-11-1.4 | 1.4 | | | <10 | 1.3 | 120 | <1 | <1 | 77 | | 15 | 54 | 5.5 | <0.2 | <5 | 120 | <1 | <2 | <10 | 51 | 66 | | SS-77-00-10-1.5 | 1.5 | | 1 | <10 | 4.0 | 160 | 1.0 | 1.7 | 78 | | 14 | 37 | 7.1 | <0.2 | <5 | 96 | <1 | <2 | <10 | 63 | 66 | AOC 5-4: Building 77 Sanitary Sewer System | | | 1 | | | | | | , | | | | | , | | | | | | | | | |-----------------|------|--------|----|-----|------|-----|-------|--------------|----|----|-----|----|-----|-------|-------|-----|------|-------|-----|----|-----| | SS77E-3-6.5 | 6.5 | Feb-92 | Q | <2 | 4.0 | 75 | 0.5 | <0.2 | 66 | | 12 | 21 | 8 | <0.2 | < 0.6 | 74 | <2 | 0.5 | <2 | 42 | 41 | | BS79-1-15.5 | 1.8 | Aug-92 | C | 1,3 | 0.6 | 85 | <0.05 | 0.67 | 76 | | 12 | 29 | 21 | <0.05 | <0.25 | 93 | <0.5 | <0.25 | <2 | 38 | 130 | | BS79-2-11.5 | 11.5 | | | <1 | 3.5 | 35 | <0.05 | 0.19 | 47 | | 7.3 | 14 | 7.8 | 0.05 | <0.25 | 38 | 0.62 | <0.25 | <2 | 26 | 38 | | BS79-2-18 | 18 | | | <1 | 0.89 | 94 | <0.05 | 0.99 | 72 | | 17 | 32 | 8.7 | 0.26 | <0.25 | 140 | <0.5 | <0.25 | <2 | 30 | 94 | | MW91-1-5 | 5 | May-91 | MT | <2 | 3 | 48 | 0.3 | <0.2 | 45 | <5 | 17 | 13 | 3 | <0.2 | <0.6 | 27 | <2 | <0.2 | <3 | 33 | 40 | | MW91-1-10 | 10 | | | <2 | 4 | 110 | 0.5 | <0.2 | 42 | <5 | 8.4 | 14 | 7 | <0.2 | <0.6 | 51 | <2 | <0.2 | <3 | 25 | 42 | | MW91-1-15 | 15 | | | <2 | 2 | 73 | 0.6 | <0.2 | 58 | <5 | 13 | 31 | 6 | <0.2 | <0.6 | 82 | <2 | <0,2 | <3 | 54 | 56 | | MW91-1-20 | 20 | | | <2 | 2 | 290 | 0.7 | <0.2 | 63 | <5 | 17 | 20 | 9 | <0.2 | < 0.6 | 96 | <2 | <0.2 | <3 | 46 | 68 | | MW91-1-25 | 25 | | | <2 | 2 | 120 | 0.5 | <0.2 | 57 | <5 | 13 | 25 | 6 | <0.2 | < 0.6 | 88 | <2 | <0.2 | <3 | 39 | 52 | | MW91-1-31.5 | 31.5 | | ŀ | <20 | 4 | 170 | 0.7 | <2 | 87 | <5 | 16 | 63 | <20 | <0.2 | <0.6 | 110 | <2 | <0.2 | <30 | 51 | 140 | | MW91-1-35 | 35 | | | <2 | 5 | 140 | 0.7 | <0.2 | 66 | <5 | 15 | 31 | 7 | <0.2 | <0.6 | 98 | <2 | <0.2 | <3 | 36 | 58 | | MW91-1-39.5 | 39.5 | | | <2 | 6 | 57 | 0.5 | <0.2 | 72 | <5 | 13 | 26 | 4 . | <0.2 | <0.6 | 90 | <2 | <0.2 | <3 | 38 | 48 | | MW91-2-5 | 5 | May-91 | МТ | <2 | 3 | 76 | 0.6 | <0.2 | 56 | | 20 | 30 | 4 | <0.2 | <0.6 | 29 | <2 | <0.2 | <3 | 45 | 51 | | MW91-2-10 | 10 | | | <2 | 3 | 72 | 0.6 | <0.2 | 64 | | 19 | 19 | 7 | <0.2 | <0.6 | 36 | <2 | <0.2 | <3 | 59 | 104 | | MW91-2-15 | 15 | | | <2 | 3 | 130 | 0.5 | <0.2 | 65 | | 14 | 29 | 7 | <0.2 | <0.6 | 80 | <2 | <0.2 | <3 | 47 | 93 | | MW91-2-20 | 20 | | | <2 | 2 | 130 | 0.6 | <0.2 | 58 | | 15 | 26 | 8 | <0.2 | <0.6 | 68 | <2 | <0.2 | 3 | 53 | 28 | | MW91-2-30.5 | 30.5 | | | <2 | <1 | 140 | 0.6 | <0.2 | 59 | | 15 | 26 | . 7 | <0.2 | <0.6 | 77 | <2 | <0.2 | 5 | 47 | 35 | | MW91-2-35.5 | 35,5 | | | <2 | 1 | 100 | 0.5 | <0.2 | 53 | | 13 | 28 | 8 | <0.2 | <0.6 | 77 | <2 | <0.2 | 4 | 39 | 34 | | MW91-2-40.5 | 40.5 | | | <2 | 4 | 88 | 0.6 | <0.2 | 64 | | 22 | 41 | 5 | <0.2 | <0.6 | 62 | <2 | <0.2 | 4 | 66 | 20 | | MW91-2-45 | 45 | | | <2 | 2 | 110 | 0.9 | <0.2 | 92 | | 17 | 27 | 12 | <0.2 | <0.6 | 110 | <2 | <0.2 | 9 | 64 | 69 | | MW91-2-60.5 | 60.5 | | | <2 | 2 | 330 | 0.9 | <0.2 | 81 | | 20 | 25 | 11 | <0.2 | <0.6 | 110 | <2 | <0.2 | 10 | 62 | 63 | | MW77-92-10-5.8 | 5.8 | Mar-92 | a | <2 | 3 | 120 | 0.6 | <0.2 | 38 | | 11 | 16 | 6 | <0.2 | <0.6 | 66 | <2 | 0.2 | <3 | 49 | 38 | | MW77-92-10-10.5 | 10.5 | | | <2 | 10 | 150 | 0.8 | 0.4 | 93 | | 19 | 46 | 11 | <0.2 | <0.6 | 130 | <2 | 0.3 | 9 | 51 | 70 | | MW77-92-10-15.3 | 15.3 | | | <2 | 14 | 220 | 0.8 | <0.2 | 77 | | 17 | 34 | 10 | 0.4 | <0.6 | 110 | <2 | 0.2 | <3 | 35 | 65 | | MW77-92-10-21 . | 21 | | | <2 | 6 | 170 | 0.7 | 0.6 | 64 | | 14 | 29 | 11 | <0.2 | <0.6 | 85 | <2 | <0.2 | <3 | 42 | 60 | | MW77-92-10-31 | 31 | | | <2 | 6 | 300 | 0.7 | 0.3 | 75 | | 15 | 24 | 12 | <0.2 | <0.6 | 90 | <2 | <0.2 | <3 | 57 | 61 | | MW77-92-10-40.3 | 40.3 | | | <2 | 7 | 320 | 0.8 | <0.2 | 80 | | 16 | 25 | 13 | <0.2 | <0.6 | 97 | <2 | 0.2 | 5 | 50 | 70 | | MW77-92-10-50.5 | 50.5 | | | <2 | 8 | 310 | 0.8 | 0.3 | 76 | | 15 | 21 | 13 | <0.2 | <0.6 | 90 | <2 | 0.2 | 4 | 51 | 68 | | MW77-92-10-71 | 71 | | | <2 | 11 | 330 | 1 | <0.2 | 88 | | 20 | 26 | 14 | <0.2 | <0.6 | 110 | <2 | 0.2 | 7 | 75 | 75 | Table C3-1 Soil Sampling Results Metals | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hq | Mo | Ni | Se | Αq | TI | V | Zn | |-----------------------|-----------|----------|---------|-----|------|-------|-------|-------|---|----------|------|------|-------|------|------|-------|-------|-----|-----|------|-------| | Maximum Bad | kground | Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106.1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | C | alifornia | Modified | PRGs | | | ľ | | 9 | *************************************** | 0.2 | | | ,, | | | 150 | - 555 | 000 | | 350 | 23000 | | | Depth | | | | · | I | l | · | | <u> </u> | l | | | | | 130 | L | | | | | | Sample ID | (ft) | Date | Lab | SB77-94-1-3.8 | 3.8 | Apr-94 | BC | <5 | 5.6 | 237 | 0.56 | <0.5 | 78 | | 16 | 33 | 5.7 | <0.2 | <2.5 | 86 | <0.5 | <1 | <5 | 45 | 66 | | SB77-94-1-9.2 | 9.2 | | | <5 | 1.6 | 131 | < 0.5 | <0.5 | 58 | | 11 | 18 | 2.5 | <0.2 | <2.5 | 79 | <0.5 | <1 | <5 | 35 | 43 | | SB77-94-1-13.7 | 13.7 | | | <5 | 0.53 | 59 | < 0.5 | <0.5 | 64 | | 9.1 | 16 | <2.5 | <0.2 | <2.5 | 66 | <0.5 | <1 | <5 | 38 | 37 | | SB77-94-2-4 | 4 | | | <5 | 6.4 | 242 | 0.51 | <0.5 | 58 | | 11 | 23 | 2.8 | <0.2 | <2.5 | B1 | <0.5 | <1 | <5 | 39 | 52 | | SB77-94-2-8.7 | 8.7 | | | <5 | 3.5 | 165 | 0.53 | <0.5 | 76 | | 12 | 26 | 5.0 | <0.2 | <2.5 | 107 | 1.1 | <1 | <5 | 38 | 58 | | SB77-94-2-13.7 | 13.7 | | | <5 | 6.1 | 252 | 0.64 | <0.5 | 67 | | 13 | 30 | 4.5 | <0.2 | <2.5 | 92 | 0.54 | <1 | <5 | 47 | 63 | | SB77-94-2-18.9 | 18.9 | | | <5 | 3.0 | 193 | <0.5 | <0.5 | 60 | | 11 | 19 | <2.5 | <0.2 | <2.5 | 93 | 0.54 | <1 | <5 | 39 | 43 | | MW77-94-5-4.3 | 4.3 | May-94 | BC | <5 | <0.5 | 74 | <0.5 | <0.5 | 45 | | 17 | 16 | <2.5 | <0.2 | <2.5 | 26 | <0.5 | <1 | <5 | 32 | 43 | | MW77-94-5-9.3 | 9.3 | | | <5 | 1.3 | 87 | <0.5 | <0.5 | 66 | | 14 | 24 | 2.6 | <0.2 | <2.5 | 53 | <0.5 | <1 | <5 | 58 | 45 | | MW77-94-5-14.1 | 14.1 | | | <5 | 4.1 | 125 | <0.5 | <0.5 | 39 | | 9.8 | 21 | 4.5 | <0.2 | <2.5 | 62 | <0.5 | <1 | <5 | 29 | 46 | | MW77-94-5-19 | 19 | | | <5 | 1.4 | 96 | <0.5 | < 0.5 | 46 | | 14 | 31 | <2.5 | <0.2 | <2.5 | 54 | <0.5 | <1 | <5 | 40 | 37 | | MW77-94-5-29.5 | 29.5 |] | | <5 |
6.0 | 131 | 0.54 | <0.5 | 60 | | 16 | 36 | 5.2 | 0.31 | <2.5 | 104 | <0.5 | <1 | <5 | 39 | 73 | | MW77-94-5-38.9 | 38.9 | | | <5 | 6.7 | 337 | 0.67 | <0.5 | 78 | | 15 | 34 | 7.0 | <0.2 | <2.5 | 110 | <0.5 | <1 | <5 | 45 | 87 | | MW77-94-5-48.5 | 48.5 | | | <5 | 3.4 | 384 | 0.61 | <0.5 | 72 | | 19 | 41 | 9.0 | 0.27 | <2.5 | 126 | <0.5 | <1 | <5 | 41 | 71 | | MW77-94-5-58.5 | 58.5 | | | <5 | 6.7 | 268 | 0.62 | <0.5 | 65 | | 15 | 28 | 5.0 | <0.2 | <2.5 | 84 | <0.5 | <1 | <5 | 57 | 77 | | MW77-94-6-3.7 | 3.7 | May-94 | BC | <5 | 1.1 | 87 | <0.5 | <0.5 | 62 | | 20 | 27 | 3.0 | <0.2 | <2.5 | 34 | <0.5 | <1 | <5 | 59 | 57 | | MW77-94-6-9.3 | 9.3 | | | <5 | 0.71 | 63 | < 0.5 | <0.5 | 61 | | 18 | 18 | <2.5 | <0.2 | <2.5 | 28 | <0.5 | <1 | <5 | 52 | 58 | | MW77-94-6-14.2 | 14.2 | | | <5 | 5.2 | 106 | <0.5 | 0.61 | 70 | | 14 | 46 | 5.8 | <0.2 | <2.5 | 92 | <0.5 | <1 | <5 | 49 | 68 | | MW77-94-6-24.2 | 24.2 | | | <5 | 4.6 | 211 | <0.5 | <0.5 | 66 | | 13 | 36 | 6.9 | <0.2 | <2.5 | 89 | <0.5 | <1 | <5 | 43 | 64 | | MW77-94-6-34 | 34 | | | <5 | 1.9 | 92 | < 0.5 | <0.5 | 82 | | 18 | 27 | 5.2 | <0.2 | <2.5 | 84 | <0.5 | <1 | <5 | 71 | 68 | | MW77-94-6-44 | 44 | | | <5 | 2.1 | 139 | <0.5 | <0.5 | 52 | | 17 | 46 | 3.8 | <0.2 | <2.5 | 61 | <0.5 | <1 | <5 | 62 | 51 | | MW77-94-6-54.5 | 54.5 | | | <5 | 9.2 | 179 | <0.5 | <0.5 | 86 | | 15 | 38 | 4.8 | <0.2 | <2.5 | 83 | <0.5 | <1 | <5 | 50 | 61 | | MW77-94-6-63.5 | 63.5 | | | <5 | 5.1 | 141 | <0.5 | <0.5 | 67 | | 13 | 48 | · 5.6 | <0.2 | <2.5 | 81 | <0.5 | <1 | <5 | 48 | 70 | | SS-MW77-97-10-D1CompA | | May-97 | BC | <10 | 6.0 | 162 | <1 | <1 | 77 | | 14 | 29 | <5 | <0.2 | <5 | 97 | <1 | <2 | <10 | 45 | 62 | | SS-MW77-97-10-D2CompA | | | | <10 | 8.0 | 135 | 1.1 | <1 | 89 | | 17 | 37 | 7.5 | <0.2 | <5 | 113 | <1 | <2 | <10 | 55 | 76 | | SS-MW77-97-10-D3CompA | | | | <10 | 4.0 | 109 | 1.1 | <1 | 308 | < 0.1 | 12 | 26 | 5.0 | <0:2 | 13 | 100 | <1 | <2 | <10 | 53 | 51 | | SS-MW77-97-10-D4CompA | | | | <10 | 4.6 | 123 | <1 | <1 | 194 | <0.1 | 10 | 77 | 17 | <0.2 | 9.6 | 72 | <1 | <2 | <10 | 45 | 80 | # Other Soil Sampling | BS-SB69A-99-1-Comp1 | | Oct-99 | BC | <10 | 3.7 | 90 | <1 | <1 | 60 | 13 | 29 | <5 | <0.2 | <5 | 89 | <1 | <2 | <10 | 45 | 44 | |---------------------|-----|--------|----|-----|-----|-----|------|------|-----|------|-----|------|------|------|-----|------|----|-----|-----|-----| | BS-SB69A-99-1-Comp2 | | | | <10 | 2.4 | 115 | <1. | <1. | 69 | 12 | 31 | 11 | <0.2 | <5 | 70 | <1 | <2 | <10 | 64 | 51 | | SS-77-99-1-1.7 | 1.7 | Dec-99 | BC | <5 | 0.9 | 13 | 0.58 | <0.5 | 4.0 | <2.5 | 4.6 | <2.5 | <0.2 | <2.5 | 6.4 | <0.5 | <1 | <5 | 4.2 | 9.4 | | SS-77-99-3-1.7 | 1.7 | | | <10 | 1.0 | 92 | <1 | <1 | 67 | 20 | 42 | <5 | <0.2 | <5 | 72 | <1 | <2 | <10 | 79 | 57 | # Table C3-1 **Soil Sampling Results** Metals (Concentrations in mg/kg) | | | | | Sb | As | Ba | Be | Cd | Cr | CrVI | Co | Cu | Pb | Hg | Mo | NI | Se | Ag | TI | V | Zn | |----------------------|------------|-----------|---------|-----|------|-------|------|------|------|------|------|------|-------|------|------|-------|------|-----|---|------|-------| | Maximum I | Background | d Concent | rations | 5.5 | 19.1 | 323.6 | 1.0 | 2.7 | 99.6 | · | 22.2 | 69.4 | 16.1 | 0.4 | 7.4 | 119.8 | 5.6 | 1.8 | 7.6 | 74.3 | 106,1 | | | USEPA | Region 9 | PRGs | 31 | 0.39 | 5400 | 150 | 37 | 210 | 30 | 4700 | 2900 | 400 | 23 | 390 | 1600 | 390 | 390 | 6.3 | 550 | 23000 | | | California | Modified | PRGs | | | | | 9 | | 0.2 | | | | | | 150 | | | | | | | · | Depth | | | | | | | | | | | | | | | | | | *************************************** | | | | Sample ID | (ft) | Date | Lab | SS-77-99-4-1.6 | 1.6 | Dec-99 | BC | <5 | 9.1 | 87 | 0.93 | <0.5 | 25 | | 4.7 | 20 | . 5.1 | <0.2 | <2.5 | 36 | <0.5 | <1 | <5 | 19 | 35 | | SS-77-99-5-1.7 | 1.7 | | | <5 | 5.2 | 94 | 0.96 | <0.5 | 61 | | 13 | 46 | 5.5 | <0.2 | <2.5 | 82 | <0.5 | <1 | <5 | 57 | 64 | | BS-SB31-97-1-RecompA | | Sep-97 | BC | <10 | 4.6 | 152 | <1 | <1 | 97 | | 19 | 39 | <5 | <0.2 | <5 | 73 | <1 | <2 | <10 | 85 | 55 | | BS-SB31-97-2-RecompA | | | | <10 | 4.5 | 149 | <1 | <1 | 78 | | 19 | 48 | <5 | <0.2 | <5 | 61 | <1 | <2 | <10 | 81 | 66 | | BS-SB31-97-3-RecompA | | | | <10 | 5.3 | 175 | <1 | <1 | 78 | | 18 | 40 | 5.9 | <0.2 | <5 | 86 | <1 | <2 | <10 | 63 | 74 | # Poultry Research Pit | SS-CKPit-97-1A-2.5 | 2.5 | Feb-97 | BC | <10 | 3.8 | 167 | <1 | <1 | 110 | 11 | 48 | 6.4 | <0.2 | <5 | 69 | <1 | <2 | <10 | 83 | 84 | |--------------------|-----|--------|----|-----|-----|-----|----|----|-----|--------|-----|-----|------|-----|-----|----|-----|-----|-----|----| | SS-CKPit-97-2A-2.5 | 2.5 | 1 | | <10 | 6.6 | 164 | <1 | <1 | 114 | 15 | 59 | 6.6 | <0.2 | <5 | 68 | <1 | <2 | <10 | 96 | 54 | | SS-CKPit-97-3A-2 | 2 | | | <50 | 20 | 160 | <5 | <5 | 244 | 26 | 202 | <25 | <0.2 | <25 | 132 | <5 | <10 | <50 | 102 | 72 | | SS-CKPit-97-4A-2 | 2 | | | <10 | 2.5 | 184 | <1 | <1 | 112 | 14 | 48 | <5 | <0.2 | <5 | 68 | <1 | <2 | <10 | 80 | 54 | | SS-CKPit-97-5A-5 | 5 | | | <10 | 6.0 | 159 | <1 | <1 | 104 | 19 | 33 | 5.3 | <0.2 | <5 | 106 | <1 | <2 | <10 | 75 | 65 | | SS-CKPit-97-6A-5 | 5 | | | <10 | 5.1 | 175 | <1 | <1 | 112 | 18 | 33 | 5.5 | <0.2 | <5 | 96 | <1 | <2 | <10 | 81 | 59 | | SS-CKPit-97-7A-5 | 5 | | | <10 | 5.2 | 197 | <1 | <1 | 116 |
17 | 33 | 5.3 | <0.2 | <5 | 103 | <1 | <2 | <10 | 91 | 63 | | SS-CKPit-97-8A-4.5 | 4.5 | | | <10 | 4.9 | 245 | <1 | <1 | 118 | 22 | 34 | <5 | <0.2 | <5 | 134 | <1 | <2 | <10 | 94 | 61 | | SS-CKPit-97-9A-5 | 5 | | | <10 | 4.5 | 137 | <1 | <1 | 105 | 14 | 35 | 5.1 | <0.2 | <5 | 95 | <1 | <2 | <10 | 74 | 69 | BC = Analysis by BC Laboratories C = Analysis by Chromalab = Not analyzed 258 = Concentration above background and PRG CLS = Analysis by California Laboratory Services < = Not detected above reporting limit MT = Analysis by Med-Tox Q = Analysis by Quanteq ND* = No soluble Cr or CrVI were detected by Waste Extraction Test (WET). # Soil Sampling Results (mg/kg) SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility Concentrations of Organic Constituents and Cyanide | | | | | | | VOCs | | SVOCs | Pesticides & PCBs | | PC | Bs | | Crude/
Waste Oll | TPH-Fuel
Identification | Oil &
Grease | Cyanide | |--------------------------------------|---------------|--------|------|-------------------|-------------------|------------------|---|--|--|--------------------------|--|---|----------------------|---------------------|---|--|--| | | | | | cis 1,2-DCE | PCE | TOE | Other Compounds Detected | | | Aroclor 1232 | Aroclor 1242 | Araclor 1248 | Aroclor 1254 | | | | | | | | | PRG | 43 | 5.7 | 2.8 | | | | 0.22 | 0.22 | 0.22 | 0.22 | ******* | | | 11 | | Sample ID | Depth
(ft) | Date | Lab | | | | | 1101 | | | | | | | | | | | SB75-96-1-4 | 4.0 | Jul-96 | BC | 0.20 | ₹0.005 | 0.015 | | | | ≠ 0.01 | <0.01 | *D.01 | <0.01 | | Crude/Waste Oil=37 | ×20 | | | SB75-96-1-9 | 9.0 | | : | 0.09 | <0.005 | ₹0,005 | chlarobenzene=0.011 | | | ₹0.01 | 20.01 | -0.01 | <0.01 | | Crude/Waste Oil=46 | <20 | | | SB75-96-1-14.2 | 14.2 | | | 0.0081 | ¥0.005 | | | | | 20 O1 | €0.01 | 40.01 | - 10 OS | | | €20 | | | SB75-96-1-19.3 | 19.3 | | | HE <0.008 | #±0.005 | <0.005 | | | | | ******* | 20.01 M | 40.01 | | NO | <2D | | | SB75-96-1-24.1 | 24.1 | | | <0.005 | ₩<0,005 | <0.005 | | | | 20.011 | W. 60.01 | <0.01 | ₹0.01 | | adamatur ND adamada | <20 | | | SB75-96-1-29 | 29.0 | | | ₹0.005 | E < 0 005 | <0.005 | | | | <0.01 | <0.01 | ₹0.01 | <0.01 | | ND | <20 | | | SB75-96-2-4.7 | 4.7 | | | <0.005 | <0.005 | <0.005 | ethyl
benzene=0.0064
totat xylenes=0.034 | | | <0.01 | 40,01 | c0.01 | 0.01 | | TPH-Motor Oll=86 | ₹20 1 | | | SB75-96-2-9.5 | 9.5 | | | #67×0,005 | ₹0.005 | <0.005 | | | | #### £0.01 | | <0.01::::ii: | ∰ 40.01 * | | | ::<20:: | | | SB75-96-2-15.1 | 15.1 | | | 0.0061 | 20.005 | ₹0,005 | : | | | <0.01.00 | | <0.01 | 10.0840.01 | | ND : | <20 | | | SB75-96-2-20
SB75-96-3-5.1 | 20.0
5.1 | | | 0.015 | <0.005 | ≈<0.005 | | | | <0.01 | <0.01 | 10.05 | €D 01 | | Hydraulic/Motor Oil=15 | 32 | | | SB75-96-3-10,1 | 10.1 | | | <0.005 | <0.005 | <0.005#
 | | | | 20.01 | 10.03 | ₹0.01 | 20.01 | | ND I | <20 | | | SB75-96-3-15 | 15.0 | | | <0.005 | ₹0.005 | <0.005 | | | | €0.01
€0.01 | <0.01 | <0.01 | <0.01 | | | <20 € | | | SB75-96-3-19.5 | 19.5 | | | <0.005 | ₹0.005 | <0.005 | | | | | | ±0.01 | <0.01 | | A CHARLEST NO THE RESERVE | <20 | | | SB75-96-4-6 | 6.0 | | | <0.005 | 20.005 | <0.005 | | | | | ¥0.01 | iffg:r<0.01 | \$0.01 ₹ | | State of NO | <50 | | | SB75-96-4-11 | 11.0 | | | <0.005 m | ≈<0.0D5 | <0.005 | | | | | | | | | | | <u> </u> | | SB75-96-4-15.6 | 15.8 | | | <0.008 | ii.<0.005 | <0.005 | | | | | <u> </u> | | | | | \vdash | | | SB75-98-4-20.8 | 20.8 | | | <0.005 | <0.005 | <0.005 | | | | | | *************************************** | | | | | | | 5875A-96-1-3.8
5875A-96-1-12.5 | 3.6
12.5 | Sep-96 | BC | <0.005 | ≪0.005
≪0.005 | €0.005
<0.006 | | | | <0.01
<0.01 | 40.01 | <0.01 | 9.0 .<0.01 | | Crude/Waste Oil=12 | <2D | | | SB75A-96-1-17.B | 17.8 | | | <0.005 | €0.005 | <0.005 | | | | | ************************************** | 20.01 | <0.01 | | Crude/Waste Oil=29
Diesel=170 | <20 | .—— | | SB75A-96-1-22,5 | 22.5 | | | <0.005 | ₹0.005 | €0.005 | | | | <0.01 | | <0.01 | <0.D1 | | Crude/Waste Oil=19 | <20 | | | SB75A-98-1-1.5 | | Apr-98 | 8C | <0.005 | <0.005 | ₹0.005 | | | | <0.01 | | <0.01 | <0.01 | | Ciude/Waste Off=19 | 20 ×20 | | | SB75A-98-1-3.2 | 3.2 | | | <0.005 | <0.005 | <0.005 | | | | 2001W | | <0.01 | £0.01 | | *************************************** | | ┼──┤ | | SB75A-98-1-5.8 | 5.8 | | | <0.005 | 20.005 | 20 005 m | | | | €0.01 | | <0.01 | <0.01 | | | | 1 | | SB75A-98-1-11 | 11.0 | | | <0.005 | #0.005 | <0.005 | | | | €0.01 F | - 11 co.012 | | <0:01 | | | | | | SB75A-98-2-1.8 | 1.8 | | | <0.006 | 20.005 | <0.005 | | | | © 10.017± | 10.05 m | | <0.01 | | *************************************** | T | | | SB75A-98-2-3.2 | 3.2 | | | <0.005 | <0.0D5 | <0.005 | · | *** | | <0.01 | *0.01 | <0.01 | <0.01 | | | | | | S875A-98-2-6 | 6.0 | | | 0.016 | ₹0.005 | <0.008 | | *** | ļ | #### < 0.01### | 20.01 | 10,05 | <0.01 | | | | | | SB75A-98-2-10.8 | 10.8 | | | <0.005 | <0.005 | <0.005 | | | | ## 40.01 | ₹0.01 | <0.01 | 40.01 | | | | | | S875AHW-97-1-1.0 | 1.0 | Jul-97 | BC | ###<0.005### | #<0.005 | ×0.005 ∺ | | Balanda AD Harristonia | HATEL NO. 1941 | | ************************************** | | HE (120.01) | 49 | | | 81 - 1 1 mil | | 5875AHW-97-1-3,0 | 3.0 | | | <0.005 | ₹0.005 | <0.005 | | E LOUIS DANS DE LES | NO P | 15 5001 | | €0.01 | 10,01 | ### <20 | *************************************** | <u> </u> | ä;-;, €1 :000 | | S875AHW-97-2-1.1
SB75AHW-97-2-2.6 | 2.6 | | | <0.005 | <0.005
<0.005 | <0.005
<0.006 | | ND ND | | <0.01 | <0.01 | <0.01 | <0.01 | #20 ×20 | | ↓ | ************************************** | | SB75AHW-97-3-1.0 | 1.0 | | | <0.006
<0.005 | <0.005 | <0.006
<0.005 | | ND SECTION ND 1885 (1985) | ND ND | <0.01 | K0.01 | 100 20 01 11 | <0.01 | 20 20 | | — | ### c 16## | | SB75AHW-97-3-2.6 | 2.6 | | | <0.005 | ₹0.005 | <0.005 | | ND II | | c0.2 | 0.97 | <0.01
<0.2 | <0.01
<0.2 | 38
460 | | | Shire Hard | | S875AHW-97-4-1.0 | 1.0 | | | | <0.005 | <0.005 | | ND C | | -0.01 | <0.01 | <0.01 | <0.01 | 400
<20 | | | 366 -1 66 | | SB75AHW-97-4-2.5 | 2.5 | | | | ₹D.005 | <0.006 | | AND THE PROPERTY NO. | ND III | <0.02 | <0.02 | <0.02 | <0.01 | 20 | | | 9555 1 1101 | | S875AHW-97-5-1.0 | 1.0 | | | €0.005 | #!<0.005 | k0,005 | | THE REPORT NO. 1981 THE RESERVE | distill NO calle | 40.01 | ₹0.01 | <0.01 | <0.01 | 20 de | | | | | SB75AHW-97-5-2.8 | 2.8 | | | i | <0.005 | <0.005 | | The Hard State of the Control | | ### <0.01 | *0.01E | £0.01 | 10.01.01 | (U. L.) <20 (U.S.) | | | 2014120 | | SB75AHW-97-6-1.0 | 1.0 | ļ | | *-<σ.005 | ₩<0.005 | <0.005 | | And the state of t | How ND 6566 | ***** 0.01 | 40.01s | | <0.01 | 420 H | | | ile zatičii | | SB75AHW-97-6-2.9 | 2.9 | | | K0,005 | ₹0.005 | <0.006 | | ND (C.) | ND all | £0.01 | <0.01 | <0.01 | <0.01 | <20 | | | ## *1 00 | | SB75AHW-97-7-1.0 | 1.0 | | | ₹0.005 | €0.005 | ₹0,005 | | Di-n-butyl phthalate=1.5 | Hente NO Rein | ₹0,02 | ### # 0.02 | <0.02 | ₹0.02 | 200 | Y | | 20 41 | | SB75AHW-97-7-3.0
SB75AHW-97-8-1.0 | 1.0 | | | <0.005 € | €0.005
•€0.005 | <0.005 | | Di-n-butyl phthalate=1.7
Butyl benzyl phthalate=0.10 | NO SI | e0.01 | 40.01
40.2 | e0.01 | ¥0.01 | 110 | | | a iktor | | SB75AHW-97-8-3.2 | 3.2 | | | <0.005 | ∠ 0,005 | <0.005 | | Di-n-butyl phthalate=1.8
Butyl benzyl phthalate=0.32 | No. | <0.01 | <0.01 | c0.21 | <0.2
<0.01 | 110
<20 | | | <1
<1 | | SB75AHW-97-9-1.3 | 1.3 | | | Printer Committee | <0.005 | | | Di-n-bulyl phthalate≃1.9 | bestelleristrechnichtight. | (thistininalized) | APRINGMANUM NE | essergia economia (della | | determinantistis. | | | HORDRINGS | | SB75AHW-97-9-1.3
SB75AHW-97-9-3.0 | 3.0 | | | 0.005 | <0.005 | <0.005 | | | NO HI | <0.02 | €0.02 | <0.05 | <0.02 | 40 | | | 444 <1 044 | | SB75AHW-97-9-3.0 | | Sep-97 | BC | 0.013 | <0.005 | | | NO SECTION | ND | <0.05 | <0.05 | <0.05 | <0.05 | €20 | | | 41 41 15 | | SUISACTO TO 4.1 | 4.7 | 26h-21 | الما | 0.021 | CUIRGO | ~U.UU3 | 1 | | NO | 20.01 | <0.01 | <0.01 | <0.01 | 420 ~20 | | 1 | 21 | # Soil Sampling Results (mg/kg) # SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility # Concentrations of Organic Constituents and Cyanide | | | | | | | VOCs | | SVOCs | Pesticides & PCBs | | PC | :Bs | | Crude/
Waste Oil | TPH-Fuel
Identification | Oil &
Grease | Cyanide | |--|---------------|--------|-----|--|------------------|----------------------|-----------------------------------|--
--|--|---------------------------|--|--|-------------------------|---|-----------------|--| | | | | | cis 1.2-DCE | FCE | TCE | Other Compounds Detected | | | Atoclor 1232 | Aroclor 1242 | Aroclor 1248 | Aroclor 1254 | | | | | | | | | PRG | 43 | 5,7 | 2.6 | | | | 0.22 | 0.22 | 0.22 | 0.22 | | | | 1 1 | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | | | 1 | | 1 | | | SB75AHW-97-10-1.0 | 1.0 | Jul-97 | BC | ************************************** | ₩0.006 | <0.005 | | | WE NO THE | ₹0.01 | W5640.01 | Him'e0.01 | ₹0.01 | <50 | | | dentitations | | SB75AHW-97-10-3.0 | 3.0 | | | <0.005 | | 40,005 | | NO NO | atieth ND in 146 | <0.2 | 111511 -0 ,2161111 | <0.2 | 40.2:4± | 180 | ······ | - | GR: <1 5H | | SB75AHW-97-11-1.0
SB75AHW-97-11-2.5 | 2.5 | | | <0.005 | <0.005 | <0,005 | | | NO: | €0.01
€0.01 | <0.01
<0.01 | €0.01
€0.01 | <0.01 | <20 ×20 | | | <1 | | SB75AHW-97-12-1.0 | 1.0 | | | <0.005 | €0.005 | <0.005 | | ation to an inches | ND | 60 O1 | <0.01 | F0.05 | <0.01
<0.01 | <20 | | | # K1 44 | | SB75AHW-97-12-2.8 | 2.8 | | | <0.005 | #<0.005 | ₹0.005 | | ORDERS DE NOTABLE DE LA COMPANION COMPAN | ALLE NOT HE | <0.08 | 0.40 | <0.08 | <0.08 | 120 | | - | 1118 | | SB75AHW-97-12-3.2 | 3.2 | Sep-97 | BC | | 1:0.005 | | | Phenanthrene=0.20 | ND I | William Zanistini | 15 | | liikili ka li ka | 400 | | | | | SB75AHW-97-13-1.0 | 1.0 | Mar-98 | BC | =0.005 | | <0.005 | | THE PARTY OF P | ND | <0.01 | | ≥0.01 | <0.01 | <20 | | | -: <0,50: | | SB75AHW-97-13-2.8 | 2.8 | | | 20,005 | | 5 KO.005 | | | CONTRACTOR OF THE | €0.05 | ### KO .05 | 20.08 | <0.05 | 43 | | | ₹0.50 | | 5875AHW-97-14-1.1 | 1.1 | | | ₹0.005 | 1640.005 | <0.005 | | | 建聚性ND 排射器 | 10,03 | ### 60,01 | 10.03 | ### # ################################ | <20 | | | <0.48 | | SB75AHW-97-14-3 | 3.0 | | | *O.008 | # <0.005 | # <0.005# | | ND ND | musik ND (arth) | | ### < 0.01### | | 10105 H | Taisik20ililin | | | <0.49 | | SB75AHW-97-15-1.2
SB75AHW-97-15-3.2 | 3.2 | - | | <0.005
<0.005 | <0.005 | 4 <0.005
3 <0.006 | Methylane chloride=0.012 | ND ND | ND
NO | <0.01
<0.01 | | <0.01
<0.01 | <0.01
<0.01 | <20
<20 | | ┤ | <0.47 | | SB75EHW-97-1-1 | 1.0 | Aug-97 | BC | 20.005 | 0.0058 | # 20.005 W | Mestrylane Lindide=0.012 | NO 100 100 100 100 100 100 100 100 100 10 | HOUSE NO STORY | <0.01 | <0.01 | 20.01 | <0.01 | 20 | | | <1 | | SB75EHW-97-1-3.5 | 3.5 | | _ | 20.005 | # co.005 | 91<0.005 | | | Marin NO 3 Marin | e0.01 | # # (0.01 | 40.01 | <0.01 | U11111420 11111 | | | 100 | | SB75EHW-97-1-4.3 | 4.3 | Sep-97 | BC | ₩ 0:005 | @<0.005# | €0.005 | | I NO | HI NO HEI | 10.05 M | K0.01 | 10.00 | 7e0 01 | 10 < 20 11 11 | | | 18181 | | SB75EHW-97-2-1.1 | 1.1 | Aug-97 | BC | ×0.005 | <0.005 | <0.005 | | ND NO | ND. | €0,01 | ₹0.01 | <0.01 | | 20 miles | | 1 | <t< td=""></t<> | | SB75EHW-97-2-3.5 | 3.5 | | | <0.005 | <0.005 | ₩<0.005** | | | NO | <0.01 | 10.05 | <0.01 | <0.01 | 420 | | | <1 | | SB75EHW-97-2-5 | 5.0 | | | +0,005 | <0.00B | <0.005 | | | ILLEN NO HILL | 1010000101 | 0.045 | ###################################### | 10.03 | ≺20 | | | | | SB75EHW-97-3-1.1 | 1.1 | | | <0.005 | ₹0.005 | #<0.005 | | | HERENDA SH | ************************************** | 10.01E | 10.05 | ≟0.01 | ¢20 | | | 59821888 | | S875EHW-97-3-2.8 | 2.8 | | | <0.005 | .co.006 | <0.005 | | | ND: | <0.01 | ×0.01 | €0.01 | 10.05 | 45 420 | | <u> </u> | alma ≮1 mia- | | SB75FLHW-97-1-0.5 | 0.5 | Aug-97 | BC | <0.005 | <0.005 | <0.005 | | Benzył alcohol=0.26
Bis(2-ethylhexyl)
phthalote=0.34 | NO. | £0.2 | <0,2 | <0.2 | V 0.2 | 27 | | | 7 | | S875FLHW-97-1-3.8 | 3.8 | ļį | | <0.005 | <0.005 | <0.005 | | Benzyl alcohol=0.21 | ND ND | <0.01 | €0.01 | ₹0.01 | <0.01 | <20 | *************************************** | | <1 | | S875FLHW-97-2-0.5 | 0.5 | | | ₹0.005 | <0.005 | ₹0,005 | | ND to the second | NO. | <0.4 | ≪0.4 | <0.4 | | Kerasena±350 | | | 359 <1 (1) | | SB75FLHW-97-2-3 | 3.0 |] | | <0.005 | <0.005 | <0.005 | | Benzyl alcohol=0.11 | | ************************************** | 20.01 | +0.01 | <0.01 | <20 - | | | GP1141 | | S875FLHW-97-3-0.5
S875FLHW-97-3-3.2 | 3.2 | { | | #0.005
≰0.005 | 20,005 | #. ~ 0,005 | | Benzyl alcohol=0.22 | ENUINDALES | 11 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | <0.2 | 11111 40 2 11 11 11 11 11 11 11 11 11 11 11 11 1 | 36 | | | | | SB75FLHW-97-4-0.5 | 0.5 | | | 40.005 | <0.005
<0.005 | <0.005
<0.005 | | Benzyl alcohol=0.19 Benzyl alcohol=0.32 | ND NO | | <0.01
<0.05 | 0,17 | <0.01
<0.05 | 100 | • | 1 | 100 ct 100 | | SB75FLHW-97-4-2.6 | 2.6 | | | <0.005 | ~C.005 | <0.005 | | Benzyl alcohol=0.18 | | <0.02 | | 0.067 | ₹0.05 | 26 | | - | ************************************** | | SB75JHW-97-1-1.8 | | Aug-97 | BC | <0.005 | ** <0.006 | ₹0.005 | | | | THE THEO B | | 3.4 | €0.5 | 650 | | + | 100054100 | | SB75JHW-97-2-1.3 | 1.3 | Sep-97 | BC | €0,005 | | W-c0.005 | | THE PROPERTY OF THE PARTY TH | ASSESSED FOR THE PARTY OF P | | €0.2 | 3182120 23151 | 0.68 | 57 | | | in tention | | SB75J-97-3 | 3.0 | Oct-97 | BC | | | | | | | e3.0 | 2.0 | 19 | 0.05 | | *************************************** | | | | S875J-97-3 | 5.0 | 1 1 | | | | | | | | ₹0.5 | ₹0.5% | 3.1 | <0.5 | | *************************************** | | | | SB75J-97-3 | 7.3 | | | | | | | | | Eliment et al | 100 HE 100 HE 100 HE | 0.64 | <0.1 | | | | | | SB75LYHW-97-1-0.8 | 0.8 | Aug-97 | BC | ₩1 < 0.005 | <0.005 | €0.005 | | Similar NO Marine | ND WHI | ¥0.01 | 1 co 018 | <0.01 | <0.01 | <20 | | | s 1 | | SB75LYHW-97-1-2.6 | 2.8 | | | -1-<0.005 | ₩<0.005 | <0.005 | | | NO ME | 10.03 | <0.013 | SHEKO,OTHE | #0.01 | | | - | il::≰1::::: | | SB75LYHW-97-2-1.2
SB75LYHW-97-2-3.7 | 3.7 | | | <0.005 | 0.025 | <0.005 | | NO NO | III NO | ₹0.01 | 40.01
40.01 | 0.036
2001 | <0.01 | <20 | | | 2005 A 100 | | SB75LYHW-97-3-1 | 1.0 | | | ₹0,005 | <0.005 | <0.005 | | HU DE TE HINDERE SELE | ND | 40.01 × 0.02 | <0.02 | <0.01 | <0.01
<0.02 | <20 | | | <1 | | SB75LYHW-97-3-2.5 | 2.5 | | | 20,005 | ### 0.005 | 0.005 | | | NO THE | <0.02 | 40.012 | <0.02 | <0.02 | <20 | | | | | SB75LYHW-97-4-1.2 | 1.2 | | | ≠0.005 | <0.005 | ₹0,005 | 1,1-DCE=0.0063
1,1,1-TCA=0.015 | NO E | NO H | ∯ (€0.01∰ | ×0.01 | ₹0.01 | <0.01 | 420 | | | i si | | S875LYHW-97-4-2 | 2.0 |] | | <0.005 ↔ | | # <0.005 | | NO PIE | I IND | (54120.01 E) | <0.01 | ₹0.01 | <0.01 | <20 | | | 002146 | | SB75LYHW-97-5-1 | 1.0 | | | ₹0.005 | # CO.0059 | ₩ < 0.005 | | | Hard NO threat | 10.03 | ### #0.01 | <0.01 | 40.01 | 27 | | | 7 S 100 | | SB75LYHW-97-5-2.7 | 2.7 | | | <0.005 | <0.005 | <0.005 | | | | <0.01 | :::::::<0.01** | <0.01 | <0.01 | 39 | | | Eng e thic | | SB75LYHW-97-6-0.7 | 0.7 | | | €0.005 | €0.005 | : <0.005 | | Benzyl alcohol=0,19 | NO | €0.01 | ₹0.01 | *0.01 | <0.01 | k20 | | | E 41(1) | | SB75LYHW-97-6-2.8 | 2.8 | | | <0.005 | <0.005 | <0.005 | <u> </u> | Benzyl alcohol=0.28 | | <0.01 | 20.01 | <0.01 | <0.01 | <20 | | | 2012 | # Soil Sampling Results (mg/kg) # SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility # Concentrations of Organic Constituents and Cyanide | | | | | | | VOCs | | SVOCs | Pesticides & PCBs | | P | CBs | | Crude/
Waste Oil | TPH-Fuel
Identification | Oil &
Grease | Cyanide | |--------------------------------------|---------------|--------|-----|------------------|--------------|------------------|--------------------------
--|-------------------|---------------------|-------------------|-------------------------|------------------|---------------------------------------|---|-----------------|--| | | | | | cis 1,2-DCE | PCE | TCE | Other Compounds Detected | *************************************** | , | Arocior 1232 | Araclar 1242 | Aroclor 1248 | Araclar 1254 | | *************************************** | 1 | | | | | | PRG | 43 | 5.7 | 2.8 | | | | 0.22 | 0.22 | 0.22 | 0.22 | | | | 11 | | Sample ID | Depth
(fl) | Date | Lab | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | • | | SB75Y-97-1 | 3.2 | Oct-97 | BC | | | 1 | | | | e0.01 | ### *0. 01 | £0.01 | <0.01 | | | 1 | | | S875Y-97-1 | 6.7 | | | | | | | | | <0.01 | ≥0.01 | 15 -c0.01 | ₹0.01 | | | | | | SB75Y-97-2A | 4.5 | | | | | | | | | 11 120 OT | <0.01 | #### ## | <0.01 | | | 1 | | | SB75Y-97-2A | 7.5 | | | | | | | | | 10.01 | 19 1 €0.01 | <0.01 | <0.01 | | | 1 | | | S875Y-97-3A | 4.5 | | | <u> </u> | | <u> </u> | | | | <0.01 | 20.01 | 0.081 | <0.01 | | | | | | S875Y-97-3A | 7.5 | | | | | | | ······ | | - i e0.01 | <0.01 | ≥0.01 | <0.01 | | | | | | SB75Y-97-4
SB75Y-97-4 | 4.9 | | | | | ├── | | | | | 20.01 | <0.01 | <0.01 | | | | | | SB75Y-97-5 | 7.5
6.3 | | | | | | | | | <0.01 | <0.01 | #### ## 0.01#### | Militar 0.01 | | | ļ | ļ | | SB75Y-97-5 | 7.5 | | | <u> </u> | | | | | | ₹0.06 | ™<0.05 | 0.28 | 40.05 | ļļ. | | ļ | | | SB75Y-97-9 | 1.0 | | | | | | | | | <0.01
<0.05 | <0.01 | <0.01
0.27 | ×0.01 | | | | | | SB75Y-97-9 | 3.0 | | | | | <u> </u> | | · | | <0.01 | | 0.27
30.01 | ₹0.05
₹0.01 | | | <u> </u> | | | S875Y-97-9 | 7.5 | | | | | | | | | ¢0.01 | £0.01 | -0.01 | ×0.01 | | | ┼── | | | SB75Y-97-10 | 2.2 | | | | | | | | | €0.01 | ×0.01 | <0.01 | <0.01 | | | - | | | SB75Y-97-10 | 4.5 | | | | | | | | | £0.01 | | 0.049 | <0.01 | | · · · · · · · · · · · · · · · · · · · | 1 | | | SB75Y-97-10 | 8.0 | | | | | | | | | <0.01 | #D.01 | <0.01 | <0.01 | | | | | | 5875YHW-97-1-0.5 | 0.5 | Aug-97 | BC | <0.005 | 4<0.00B= | <0.005 | | an della sella NO Statilla basishi | HERITA NO HATE | <0.2 | illim to pinin | 0.20 | | 20 | | 1 | 41.5 | | S875YHW-97-1-3.2 | 3.2 | | | €0.005 | <0.005 | <0.005 | | ND ND | | <0.01 | 41 40.01 L | # 40.01 | 40.01ld | | | | 11121111 | | S875YHW-97-2-0.8 | 0.8 | | | <0,006 | <0.005 | <0.005 | | ND | NO + | -5 | ## 45 | 48 | <5 | 67 | | | : <1 :: | | S875YHW-97-2-3 | 3.0 | | | <0.005 | 20.005E | 20.005 | | ND THE | NO INTE | <0.02 | <0.02 | 0.15 | <0.02 | 67 | | | 1202195 | | SB75YHW-97-3-0.8 | 0.8 | | | <0.005 | <0.005 | <0.005 | | All the section NO restriction and | MANUAL NO HOUSE | 1911 E.O. 6 SEC. 18 | 91: -0.5 | 2.8 | <0.5 | 37 | | 1 | 4 K | | S875YHW-97-3-3 | 3.0 | | | <0.005 | ं<0.005≅ | <0.005 | | All and the North Control of the Con | is in NO | AL | #### <0.08- | ≠::::-<0.05 | 40.05 | 160 | | 1 | Basterina | | S875YHW-97-4-0.7 | 0.7 | | | <0.006 | <0.005 | <0.005 | | ND State in | i kandala | €0.1 | alle e0/1: | 0.50 | <0.1 | ::: 20 :::≘::: | | | 1000 | | SB75YHW-97-4-2.8
SB75YHW-97-5-0.8 | 2.8 | | | <0.005
<0.005 | <0.005 | 40,005 | | | ND | <0.01 | <0.01 | 0.058 | - co o1 | ≮20 | *************************************** | | <1 | | SB75YHW-97-5-3 | 3.0 | | | <0.005 | <0.005
 | 40,005
√0,005 | | | ND NO | €0.6 | 4015 | 2.1 | €0.5 | 65 | | | 311111111111111111111111111111111111111 | | SB75YHW-97-6-2 | 2.0 | | | £0.005 | <0.008 | <0.005 | | Bara Bara | MO NO | ₹0.01 m
₹0.01 | #### *0.01 | 0.021 | <0.01 %
<0.01 | <20 <20 | **** | - | U002108 | | SB75YHW-97-6-3.2 | 3.2 | | | e0.005 | <0.005 | <0.005 | | MOSE CONTRACTOR | NO: | <0.01 | ₹0.01 | 0.018 | <0.01 | <20 | | | | | SB75YHW-97-7-1.2 | 1.2 | | | <0.009 | ₩€0.008 | <0.005 | | (SARSTEELS OF NO SHAPE RELEASE | NO TO | €0.01 | <0.01 | <0.01 | ₹0.01 | €20 | | | <1 ×1 | | SB75YHW-97-7-3 | 3.0 | | | <0.005 | 10005 | 40 OD5 | | OPERATE NO REPORTE | HILLING HILL | 111110.03111111 | <0.011 | 20.01 | ₹0.01 | # <20 | | | Hali iz e nişê | | SB75YHW-97-8-1.3 | 1.3 | | | | 0.028 | <0.005 | | STATE OF THE PARTY OF THE PARTY OF | O | 11 120 O1 11 | 12.001 | - 0.01 | 10.05 | ::::.<20 | | | E005<1005 | | SB75YHW-97-8-3.5 | 3.5 | | | <0.005 | 0.14 | 0.011 | | NO SE | NO. | <0.01 | <0.01 | ₹0.01 | <0.01 | | • | | 20.41.88 | | SB75YHW-97-8-4.3 | 4.3 | Sep-97 | BC | <0.005 | 0.072 | 0.0054 | | NO VIE | NO. | <0.01 | e0 D1 | <0.01 | <0.01 | <20 | • | | <1 | | SB75YHW-97-8-5.4 | 5.4 | | | <0.005 | 0.31 | 0.0069 | | ND W | Minima ND An Min | 20.01 | 10.05 | 20.01 | <0.01 | ₹20 | | · · | 21 | | SB75YSWR-97-1-2.6 | | Oct-97 | BC | €0.006 | 0.0070 | <0:006 | | | | | | | | | | | 2 <1.0 | | SB75YSWR-97-1-3.6 | 3.6 | | | <0.005 | 0.019 | -<0:005 ii | | | | | | | | | | | #: <1.0 | | SB75YSWR-97-2-2.5 | 2.5 | | | <0.005 | 0.040 | <0.005 | | | | | | | | | | | <1.0 | | SB75YSWR-97-2-3.5 | 3.5 | | | <0.005 | 0.069 | 0.026 | | | | | | <u> </u> | | | | | 80 4110 88 | | SB75A-97-3 | | Oct-97 | BC | | <u> </u> | | | | | | 12 KD.01 | <0.01 | <0.01 | | | | | | SB75A-97-12 | 4.2 | A 00 | BC. | | ! | | · | | | ₹0.01 | | 0.036 | 0.01 | | | | | | SB75A-99-1
SB75A-99-1 | 5.0 | Aug-99 | 191 | | | | | | | <0.01 | | c0.01 | 40.01 | | | · | | | 5875A-99-1 | 10.0 | | | | | | | | | <0.01 | | <0.01 | <0.01 | | ····· | - | | | SB75A-99-1 | 15.0 | | | <u> </u> | | | | | | <0.01 | <0.01 | <0.01
<0.01 | <0.01
<0.01 | | | + | | | SB75A-99-2 | 0.8 | | | | | ···· | | | 1 | <0.01 | | ₹0.01 | <0.01 | | | 1 | | | SB75A-99-2 | 4.5 | | | | | · | | | | <0.01 | €0.01 | <0.01 | <0.01 | - | | | | | SB75A-99-2 | 10.0 | | | | | <u> </u> | | | 1.7.7.1 | <0.01 | <0.01 | 20.01 | <0.01 | | | | | | SB75A-99-2 | 13.3 | | | | | | | | | <0.01 | : + <0.01 | <0.01 | <0.01 | | | 1 | <u> </u> | | SB75A-99-3 | 0.8 | | | | | | | | | ₹0.01 | <0.01 | <0.01 | <0.01 | | | | | | SB75A-99-3 | 5.0 | | | | | | | **** | | ₹0.01 | <0.01 | <0.01 | <0.01 | | | 1 | | | SB75A-99-3 | 10.0 | į | | | | | | | | <0.01 | <0.01 | <0.01 | <0.01 | | | | | | SB75A-99-3 | 15.0 | | | l | | 1 | L | | | ≥0.01 | <0.D1 | KD,01 | <0.01 | | | | | # Soil Sampling Results (mg/kg) # SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility # Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, PCBs, Fuel Hydrocarbons, Cyanide | | | | | | | VOCs | | SVOCs | Pesticides & PCBs | | PC | 285 | | Crude/
Waste Oil | TPH-Fuel
Identification | Oil &
Grease | Cyanide | |----------------------------|---------------|--------|----------|--------------|--|--|--|---|---|---|--|---------------------|----------------|---------------------|---|--|--| | | | | | cis 1.2-DCE | POE | TCE | Other Compounds Detected | | | Araclar 1232 | Arector 1242 | Araclar 1248 | Arocior 1254 | | | · | İ | | | | | PRG | · | 5.7 | 2.8 | | | | 0.22 | 0.22 | 0.22 | 0.22 | | | | 1: | | Sample ID | Depth
(ft) | Date | Lab | | L | | ' | | | .1 | 1 | | | <u> </u> | | .1 | | | SB75A-99-4 | 0.8 | Aug-99 | BC | | | 1 | | | | FF 60 01 FF | 10.01 | ₹0.01 | ₹0.01 | i. | | 1 | $\overline{}$ | | SB75A-99-4 | 5.0 | | | | | | | | | <0.01
 ln 5/40,012 | <0.01 | 10.05 | | ····· | 1 | 1 | | SB75A-99-4 | 10.0 | | | <u></u> | <u> </u> | <u> </u> | | | | ∄ . <0.01 | | <0.01 | <0.01 | | | 1 | | | SB75A-99-4 | 14.9 | | | <u> </u> | | ļ | | | | | <0.01 | | <0.01 | | | | | | SB75A-99-5 | 0.8 | | | | - | ! | | | | | 20.01 | | <0.01 | | | | | | SB75A-99-5 | 5.0 | | | | - | 1 | | | | | KO 01 | | <0.01 | | | <u> </u> | <u> </u> | | SB75A-99-5
SB75A-99-5 | 10.0 | | | | - | 1 | | | - | 10.03 | | | - 10.03 mile | | | <u> </u> | <u> </u> | | SB75A-99-6 | 0.7 | | | | - | · } | | | | | id: 60.01 | | | | | | | | SB75A-99-6 | 5.0 | | | — | + | | | | | | <0.01 | | | | | | | | SB75A-99-6 | 10.0 | | | | — — | 1. | | | | | #### <0.01 | <0.01
<0.01 | €0.01
€0.01 | | | | ↓ | | SB75A-99-6 | 15.0 | | | | | | | # | | 10.01 | | <0.01 | | - | | | | | SB75A-99-7 | 0.7 | | | | 1 | <u> </u> | 1 | | | £0.01 | | ≥0.01 | | ***** | | ┼── | | | SB75A-99-7 | 5.0 | | | | · | · | 1 | | 1 | <0.01 | | | <0.01 | | | | + | | S875A-99-7 | 10.0 | | | | 1 | | | | | 111111111111111111111111111111111111111 | | 40.01 | £0.01 | | | | | | SB75A-99-7 | 15.D | | | | | 1 | | | | 10.03 | | ×0.01 | <0.01 | | | - | | | SB75A-99-8 | 1.0 | | | | | | į | | - | €0.01 | 0.14 | | <0.01 | | | 1 | | | SB75A-99-8 | 5.0 | | | | | | | | | <0.01 | <0.01 | €0.01 | <0.01 | | | 1 | *************************************** | | S875A-99-8 | 10.0 | | | | 1 | ļ | | | | <0.01 | <0.01 | <0.01 | <0.01 | | | T | | | S875A-99-8 | 15.0 | | | | <u> </u> | | | | | 20.01 | ## E<0.01 | | <0.01 | | | 1 | | | SB75A-99-9 | 2.2 | | | | | | | | | (0.01:11) | 0.023 | <0.01 | | | | | | | S875A-99-9 | 5.0 | | | | ļ | | | | | <0.01 | | <0.01 | <0.01 | | | | | | SB75A-99-9 | 10.0 | | | | | | | | _ | <0.01 | | <0.01 | <0.01 | | | | | | SB75A-99-9
SB75A-99-10 | 15.0 | | | <u> </u> | 1 | | | | | *************************************** | 100 60 01 | 40.01 | 10 05 Miles | | ···· | | ļ | | SB75A-99-10 | 5.0 | | | 1 | | 1 | | | | | 16:15:40.015616 | | <0.01 | | | | | | SB75A-99-10 | 10.0 | | | | | - | - | | · · · · · · · · · · · · · · · · · · · | | ###################################### | | ₹0.01 | | | | | | SB75A-99-10 | 15.0 | | | | 1 | | | | | | 60 01 C | <0.01
<0.01 | <0.01
<0.01 | | | | — | | SB75A-99-11 | 1.5 | | | — | | | | | | | 10.1250.012 | ×0.01 | £0.01 | | | + | | | SB75A-99-11 | 5.0 | | ĺ | | † | 1 | | | | ********** | 100 EQ 0151 | ×0.01 | <0.01 | | *************************************** | | | | SB75A-99-11 | 10.0 | | | | 1 | | i i | | | | 40.01 | <0.01 | <0.01 | | | | | | SB75A-99-11 | 15.0 | | | | | | 1 | | *************************************** | | 20 O S | <0.01 | 10.05 | | *** | | | | SB75A-99-12 | 1.5 | | | | | | | | | MINEO 01 201 | <0.01 | -0.01W | 40.01 | | | 1 | | | SB75A-99-12 | 5.5 | | | | | | | | | ### * 0.01 | 10.03E | **** €0.01 % | 10.05×11 | | | | 1 | | SB75A-99-12 | 10.0 | | | | . | | | | | ₹0.01 | | ₹0.01 | E 10,01 | | - | 1 | | | SB75A-99-12 | 14.5 | | 1 | ļ | ļ | | | | | <0.01 | | <0.01 | <0.01 | | | | | | SB75A-99-13 | 1.5 | | ł | | | ļ | | *************************************** | | | *** KO O13 | | <0.01 | | | | | | SB75A-99-13 | 5.0 | | | | | | | | | | 20 O 1 | <0.01 | 20.01 | | | | | | SB75A-99-13
SB75A-99-13 | 10.0 | | 1 | - | 1 | · | 1 | | | €0.01 | | ±10.01 | 40.01 | | | | <u> </u> | | SB75A-99-14 | 1.5 | | | | 1 | | | | | 10.05 | | £0.01 | 40,01 | | | | | | SB75A-99-14 | 5.0 | | | | | | | | | <0.01 | 0.024 | €0.01 | <0.01 | | | | — | | SB75A-99-14 | 10.0 | | | | | | | | | <0.01 | <0.01 | <0.01 | <0.01 | | | | | | SB75A-99-14 | 15.0 | | | | | 1 | | | | <0.01 | | <0.01
<0.01 | <0.01
€0.01 | | | | | | SB75A-99-15 | 1.5 | | | | | † | · | | | <0.01 | | <0.01 | ₹0.01 | | | + | | | SB75A-99-15 | 5.0 | | | | 1 | 1 | | | | <0.01 | | <0.01 | <0.01 | | | + | | | SB75A-99-15 | 6.8 | | Į . | | 1 | 1 | | | | <0.05 | | <0.05 | ₹0.05 | | · · · · · · · · · · · · · · · · · · · | | | | SB75A-99-16 | 1.5 | | l | | | | | | | <0.01 | 60.01 | <0.01 | <0.01 | | | | | | SB75A-99-16 | 5.0 | | 1 | | | | | *************************************** | | 1.60.01 | | <0.01 | ₹0.01 | | | | | | SB75A-99-16 | 10.0 | | | | | | | | | <0.01 | · · · · · · · · · · · · · · · · · · · | <0.01 | ₹0.01 | | | | | | SB75A-99-16 | 15.0 | | 1 | | | ļ | | | | €0.01 | | <0.01 | <0.01 | | | 1 | † | | SB75A-99-17 | 1.5 | | <u> </u> | 11 | | <u> </u> | | | | <0.2 | 2.8 | ±0.2 | <0.2 | | *** | | t | # Soil Sampling Results (mg/kg) # SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility # Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, PCBs, Fuel Hydrocarbons, Cyanide | | | | | | | VOCs | | SVOCs | Pesticides & PCBs | | PC | CBs | | Crude/
Waste Oil | TPH-Fuel | Oil &
Grease | Cyanide | |-----------------------------|---------------|--------|-----|---------------|--|--|--------------------------|---|-------------------|-----------------|--|--|--|---------------------|---|-----------------|--| | | | | | cis 1.2-DCE | POE. | TCE | Other Compounds Detected | • | | Aroclar 1232 | Arocior 1242 | Aroclor 1248 | Arocior 1254 | | | | *************************************** | | | | | PRG | $\overline{}$ | 5.7 | 2.8 | | | | 0.22 | 0.22 | 0.22 | 0.22 | | | | 11 | | Sample ID | Depth
(ft) | Date | Lab | 1 | 1 | | | | | , | | | 5.22 | ļ | | 1 | | | SB75A-99-17 | 5.0 | Aug-99 | BC | | | | | | | <0.2 | 0.37 | <0.2 | Historia de la constanta de la | | | | $\overline{}$ | | SB75A-99-17 | 10.0 | | | | <u> </u> | | | | | <0.01 | <0.01 | Helico of Cal | <0.01 | | | | | | SB75A-99-17 | 14.0 | | | | ļ | | | | | <0.01 | <0.01 | Hall to os the | ₹0.01 | | | | | | SB75A-99-18 | 1.5 | | | | | | | | | <0.2 | 1.8 | ₹D.Z | <0.5 | | | | | | SB75A-99-18 | 5.0 | | | | | | | | | ⊒l 2<0.05 ii | 0.074 | ## ₹0.05 | ₹0,05 | [| | | | | SB75A-99-18 | 10.0 | | | | - | | ļ | ···· | | <0.01 | | <0.01 | <0.01 | | *************************************** | | | | SB75A-99-18
SB75A-99-19 | 13.5 | | | - | - | | | | _ | | <0.01 | ###################################### | <0.01 | | | | <u> </u> | | SB75A-99-19 | 5.0 | | l | - | - | | | | | 1.1 | | 1002 | 11111 E0.2 | | | | ļl | | SB75A-99-19 | 10.0 | | l | | | | ļ | 44 | | | did <0.01 | <0.01 € | <0.01 | | | ļ | | | SB75A-99-19 | 15.0 | | | | 1 | | | | | | 40.01 | | <0.01
<0.01 | | · | | | | SB75A-99-20 | 2.0 | | | | † · | } | <u> </u> | *** | - | + F1/10 | 10.020.01 | | <0.01 | | | 1 | | | SB75A-99-20 | 5.0 | | | | 1 | | | | | | | 100 co o 1 | | | | ┼ | - | | SB75A-99-20 | 9.5 | | | | 1 | *************************************** | | - | | | | ×0.01 | | | | 1 | | | 5875A-99-21 | 1.5 | | | | | | | | | | | <0.01 | <0.01 | | | 1 | \vdash | | SB75A-99-21 | 5.0 | | | | | | | | | | | <0.01 | | i | | 1 | | | SB75A-99-21 | 10.0 | | | | | | | | | | | ###################################### | | | · · · · · · · · · · · · · · · · · · · | 1 | | | S875A-99-21 | 14.5 | | | | | | | | | # # 0.01 Hall | ₹0.01 | | 10 0 of | | | T | | | S875A-99-22 | 1.5 | | | | 1 | | | | | <0.01 | | €0.01 | <0.01 | | | | | | SB75A-99-22 | 5.0 | | | | 1 | ļ | | | | 20.01 | | ₹0.01 | <0.01 | | | | | | S875A-99-22 | 10.0 | | | <u> </u> | | | | | _ | | H 140.01 | *0.01 | <0.01 | | | | | | SB75A-99-22 | 15.0 | | | | - | ļ | | | | 25 - KO.01 | | €0.01 | | | | <u> </u> | | | SB75A-99-23 | 5.0 | | | ļ | - | | | | | <0.01 | | 20,01 | <0.01 | | | | | | SB75A-99-23
SB75A-99-23 | 10.0 | | | <u> </u> | + | | | *************************************** | | <0.01 | | ₹0.01 | <0.01 | | ····· | | ļ | | 5875A-99-23 | 15.0 | | | | 1 | | | | | | ₹0.01 | | <0.01 | | | | | | SB75A-99-24 | 1.5 | | | | 1 | | 1 | | | | <0.01 | ₹0.01 | 10.01 | | | | | | SB75A-99-24 | 5.0 | | | <u> </u> | 1 | | | ** | | | <0.01 | | <0.01
<0.01 | | | | | | SB75A-99-24 | 10.0 | | | | 1 | | I | | | | <0.01% | | <0.01 | | | | ł | | SB75A-89-24 | 15.0 | | | | | | | | | | STREET & O. O. (2012) | | <0.01 | | · | 1- | | | SB75A-99-25 | 1.5 | | | | | | | · · · · · · · · · · · · · · · · · · · | | ## 40.05 | | in in colosius | <0.05 | | | | | | S875A-99-25 | 5.0 | | | | 1 | | | | | <0.01 | | ×0.01 | <0.01 | | ····· | _ | | | SB75A-99-25 | 10.0 | | | | 1 | | | | | | 40.01 | | <0.01 | | | | \vdash | | SB75A-99-25 | 15.1 | | | | | | | | | 20.01 | ### £0.01 | mare no imp | €0 01 | · | | | | | SB75A-99-26 | 1.5 | | | | 1 | | | | | ₹0.01 | <0.014 | <0.01 | ×0.01. | | | | | | SB75A-99-26 | 5.0 | | I | | <u> </u> | ļ | | | | <0.01 | | ×0.01 | <0.01 | | | | | | SB75A-99-26 | 10.0 | | | | | | | | | | <0.01 | | <0.01 | | | | | | SB75A-99-26 | 13.5 | | | | - | | | | | === €0.01 | | ₹0.01 | <0.01 | | | | <u> </u> | |
SB75A-99-27A | 1.5 | | I | | | <u> </u> | | | | | 10.05 PM | | 10.0311111 | | | | | | SB75A-99-27A | 5.0
10.0 | | | | | | | | - | <0.01 | | <0.01 | 10.01 | | | | <u> </u> | | SB75A-99-27A
SB75A-99-28 | 3.5 | | | —— | | | 1 | ***** | | <0.01 | | i c 0.01 | <0.01 | | | | | | SB75A-99-28 | 6.3 | | | | | | | | | | <0.01% | <0.01 | <0.01 | | | | | | SB75A-99-29 | 1,5 | | 1 | | | | 1 | | + | <0.05 | 0.078 | <0.01 | <0.01 | | | - | + | | SB75A-99-29 | 5.0 | | | | † | | | · · · · · · · · · · · · · · · · · · · | | - ct | 17 | <0.05 | CU.UH | | | | 1 | | S875A-99-29 | 10.0 | | | | 1 | | i | | | <0.01 | | <0.01 | <0.01 | | | + | | | SB75A-99-29 | 14.8 | | ļ | ľ | | | | ! | | 40.01 | | ₹0.01 | <0.01 | · | | 1 | | | SB75A-99-30 | 1.5 | | | | | | | | | ESESTIVATION OF | 4.7 | BURNETHER | | | | 1 | | | SB75A-99-30 | 5.0 | | 4 | | | | | | | <0.02 | 0.053 | 11 /4 2 × 0 .02 | <0.02 | | | 1 | | | SB75A-99-30 | 10.0 | | } | | | | | | | <0.01 | ************************************** | ×0.01 | <0.01 | | *************************************** | 1 - | | | SB75A-99-30 | 14.6 | | | | ļ | | | | | <0.01 | <0.01 | | ₹0.01 | | | | | | SB75A-99-31 | 2.0 | | | | Į | ŧ . | <u> </u> | | | 1,02 | 0.52 | <0.1 | . 0.1 | | | | | # Soil Sampling Results (mg/kg) # SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility # Concentrations of Organic Constituents and Cyanide | | | | | | | VOCs | | SVOCs | Pesticides &
PCBs | | PC | 9s | | Crude/
Waste Oil | TPH-Fuel
Identification | Oil &
Grense | Cyanide | |------------------------------------|---------------|---------|----------|--|--|---|---|---|----------------------|---|----------------------|--|--|--|---|--|--| | | | | | cis 1.2-DCE | FCE | TOE | Other Compounds Detected | | | Aroclor 1232 | Aroctor 1242 | Araclar 1248 | Aroclor 1254 | | | | | | | | | PRG | 43 | 5.7 | 2.8 - | | | | 0.22 | 0,22 | 0.22 | 0,22 | | | 1 | 11 | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | | | : | | | | | SB75A-99-31 | 5.0 | Aug-99 | BC | | | | | | | <0.01 | | | ₹0.01 | | | | | | SB75A-99-31 | 10.0 | | | | ļ | | | | | <0.01 | | 20,01 | <0.01 | | | | <u> </u> | | SB75A-99-32 | 3.5
5.0 | 1 | | ļ | | | | *************************************** | | <0.01 | £0.01 | <0.01 | <0.01 | i. | ********** | | | | SB75A-99-32
SB75A-99-32 | 10.0 | 1 | Ì | | | | | | | <0.01
60.01 | <0.01 | <0.01 | <0.01 | | | - | ├ | | SB75A-99-32 | 14.0 | 1 | 1 | | | | | | | 60.01 | <0.01
<0.01 | <0.01 | <0.01 | | | | | | SB75A-99-33 | 1.5 | 1 | l | - | | | | ···· | _ | <0.01 | 30.01 | ************************************** | <0.01 | | | | | | SB75A-99-33 | 4.7 | 1 | ŀ | | | | | | | 20.01 | €0.01 | <0.01 | <0.01 | | *************************************** | | - | | SB75A-99-33 | 10.0 | 1 | ŀ | | | *************************************** | | | | 60.D1 | 20.01 | <0.01 | <0.01 | | | | | | SB75A-99-33 | 12.5 | 1 | ļ | | | | | | | £0.01 | ₩ 6 0.01 | 20.01 | ************************************** | | | | | | SB75A-99-34 | 1.5 | 1 | | | | | | | | | 3,9 | | | | | | | | SB75A-99-35 | 5.0 | | f | | | | | | | Historia de la composición della de | 5.2 | | | | | | | | SB75A-99-35 | 10.0 | | | | | | | | | 20.01 | <0.01 | <0.01 | <0.01 | | | | | | SB75A-99-35 | 12.1 | | | <u> </u> | | | | *************************************** | | 11110.01 | 0.067 | ₹0.01 | ₹0.01 | | | | | | SB75A-99-36 | 2.5 | | | | | | | | | 20.01 | 20 01 HE | <0.01 | ₹0.01 | | | <u> </u> | | | SB75A-99-36 | 4.8 | | | <u> </u> | | | | | | <0.01 | ### * 0.01### | 20.01 | <0.01 | | ··· | | L | | SB75A-99-36
SB75A-99-36 | 9.3
12.5 | 1 | | | | | | | | ×0.01 | <0.01 | ₹0.01 | <0,01 | | | | | | SB75A-99-36
SB75A-99-37 | 1.5 | 1 | | | | | | | | <0.01 | <0.01 | <0.01 | £0.01 | | | ļ | | | SB75A-99-37B | 6.3 | l | | i | | | | | | <0.01 | ≥0.01
≥0.01 | <0.01
<0.01 | <0.01 | | | | | | SB75A-99-37B | 10.0 | 1 | | | | | | | _ | <0.01 | <0.01 | <0.01 | <0.01 | | | - | | | SB75A-99-37B | 15.0 | 1 | | | | | | | | <0.01 | <0.01 | <0.01 | <0.01 | - | | | | | SB75A-99-38 | 1.5 | Nov-99 | BC | İ | | *************************************** | | | | 60.D1 | \$0.01 | e0 01 | <0.01 | | | | | | SB75A-99-38 | 5.0 | ĺ | | | 1 | | | | | <0.01 | <0.01/ | 0.01 | <0.01 | | | 1 | \vdash | | SB75A-99-38 | 9.4 | 1 | | | | | | | 1 | 20.01 | 10.01×0.01 | 15 11 co.o.i | <0.01 | | | | | | SB75A-99-38 | 13.8 | | | | | | | | | <0.01 | ### €0.01 | <0.01 | <0.01 | f | | 1 | | | S875A-99-38Comp | <u> </u> | | <u> </u> | 0.0067 | <0.005 | ⊀0,005: | | | | | | | | Í | | — — | | | MW75-96-20-5.2 | 5.2 | Oct-96 | cs | 0.42 | 0.019 | 0,0077 | ccetons=0.27 chlorobonzene=0.03 trans=1,2-DCE=0.008 p-isopropylioluene=0.013 1,2,4-irimelhylbenzene=0.14 1,3,5-trimelhylbenzene=0.04 toluene=0.0062 | | | | | | | | | | | | MW75-96-20-11 | 31.0 | Feb-97 | ĐC | ₹0.005 | ₹0.005 | ₹0.005 | xylenes=0.048 | | | | | | | | - | - | | | MW75-96-20-20.5 | 20.5 | 1 20-01 | "" | <0.005 | <0.005 | . <0.005
. k0.005 | | | | | | | | | · | | | | MW75-96-20-30.5 | 30.5 | | | 10 0 005 H | 20.005 | # KO.00B | | # | | | | | | | | | | | MW75-96-20-40.2 | 40.5 | | | <0.005 | <0.005 | **<0.005 | | | | | | | | | | 1 | | | MW75-98-20-50.B | 50.8 | | | <0.005 | <0.005 | ₩<0.005 | | | | | | | ****** | ·· | | | | | MW75-98-14-5.7 | 5.7 | Sep-98 | BC | <0.005 | <0.005 | <0.005 | | | | | | | | | | 1 | | | MW75-98-14-10.2 | 10.2 | | | KO 005 | **CO.005 | ≠0.005 | | | | | | | | | | 1 | | | MW75-98-14-14.1 | 14.1 | | - | <0.005 | <0.005 | <0.005 | | | | | | | | | | | | | MW75-98-14-19.3 | 19.3 | | | <0.005 | × <0.005 | #<0.005 | | | | | | | | | | | | | MW75-98-14-24.2 | 24.2 | | | <0.005 | <0.005 | <0.005 | | | | | | | | | | | | | MW75-98-14-29.2 | 29.2 | | | <0.005 | <0.005 | <0.005 | | | | | | | •••• | | | | | | MW75-98-14-34.2 | 34.2 | | | <0.005 | ## <0.005 # | <0.005 | | | | ļ | | [| | | | <u> </u> | | | MW75-98-15-9.5 | 9.5
18.5 | | 1 | 1 <0.008 | 20:005 | **<0.005 | | *************************************** | | | | | | ļļ | | <u> </u> | ļ | | MW75-98-15-18.5
MW75-96-15-28.6 | 28.6 | | | ₹0,005
₹0,005 | <0.005 | <0.005
<0.005 | | | | | | | | | | - | | | MW75-99-4-3.0 | 3.0 | Jul-99 | BC | 20.005 | <0.005 | <0.005 | Methylene chloride=0.017 | | | 1-601-1-15 A 14 A 11 11 11 11 | Annonia garanti | mmara (4.25.65) | ades a selective programme | | | | | | MW75-99-4-4.5 | 4.5 | 301-35 | | ≥0,005 | | -≺0.005 | monylone change=0.017 | | | <0.01
<0.01 | <0.01
<0.01 | <0.01
<0.01 | <0.01 | | | | | ## Soil Sampling Results (mg/kg) SWMU 3-6: Building 75 Former Hazardous Waste Handling and Storage Facility Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, PCBs, Fuel Hydrocarbons, Cyanide | | ٠ | | | | | VOCs | | SVOCs | Pesticides & PCBs | | P | CBs | | Crude/
Waste Oil | TPH-Fuel
Identification | Oil &
Grease | Cyanide | |----------------|---------------|----------|---------
-------------|---------------|---------------|--------------------------|---|-------------------|---|--|--|--|---|---|-----------------|---| | | | | | cis 1.2-DCE | PCE | TŒ | Other Compounds Detected | | | Araclor 1232 | Aroclor 1242 | Aroclor 124 | Araclar 1254 | | | | | | | | | PRG | 43 | 5.7 | 2.8 | | ****** | - | 0.22 | 0.22 | 0.22 | 0.22 | | | | 11 | | Sample ID | Depth
(f1) | Date | Lab | | | | | | ' | | | | | · · · · · · · · · · · · · · · · · · · | | | 1 | | MW75-99-4-6.5 | 6.5 | Jul-99 | BC | ₹0.005 | 0.009 | ≈0.005 | | | | c0.01 | <0.01 | - 60.01 | <0.01 | | | | T | | MW75-99-4-9.2 | 9.2 | | | <0.005 | 0.019 | 20,005 | | | | <0.01 | 20 01 T | 20,01 | <0.01 | | | ··· | | | MW75-99-4-13.5 | 13.5 | | | 20.005 | <0.005 | | | | | <0.01 | 州海龙0.01 型 | | <0.01 | | | ··· | | | MW75-99-4-17.0 | 17.0 | | | i ii≪0.005 | <0.005 | | | | | c0.01 | 100 HG 0.01 HH | ₹0.01 | 20.01 | | | | | | MW75-99-4-18.8 | 18.8 | | | <0.005 | <0.006 | <0.005 | | | i i | alle: <0.01 | <0.01 | . €0.01 | <0.01 | | | | | | MW75-99-4-28.5 | 28.5 | | | <0.005 | **<0.005 | <0.005 | | 7 | j | <0.01 | <0.01 | <0.01 | <0.01 | | | | | | MW75-99-4-33.7 | 33.7 | | | <0.005 | 18 €0.005 | <0.005 | | | | <0.01 | 185920,0199 | <0.01 | ************************************** | | | | | | MW75-99-6 | 10.1 | Nov-99 | æ | | | | | | | <0.01 | 10,020,01 | 20.01 | ₩ 40.01 | | *************************************** | 1 | | | MW75-99-6 | 13.7 | | | | | | | | | €0.01 III | <0.01 | <0.01 | 10.05 | | | | | | MW75-99-6 | 18.9 | | | | | | | | | <0.01 | ###################################### | <0.01 | <0.01 | İ | | | | | MW75-99-6 | 23.9 |] | | | 1 | | | | Ĭ | £0.01 | F <0.01 | <0.01 | <0.01 | | | | 1 | | MW75-99-6Comp | | | | <0.0D5 | ₹0.005 | ₹0.005 | |] | | | 1 | | | | | | | | MW75-99-7 | 19.3 | Nov-99 | BC | | l . | | | | | £0.01 | 100 KO D18 | ## e0.01 | e0.01 | | | -i | | | MW75-99-7 | 23.9 |] | | | | | ļ | | | <0.01 | <0.01 | ************************************** | <0.01 | | | 1 | | | MW75-99-7Comp | |] | | <0.005 | <0.005 | <0.005 | 1 | | | | | | | | | | | | MW75-99-8 | 8.3 | Dec-99 | BC | | | | | | | <0.01 | <0.01 | <0.01 | <0.01 | | | | | | MW75-99-8 | 10.5 | | | | | | | ··· | T | THE COLD ! | € cD.01 | <0.01 | <0.01 | | | | | | MW75-99-8 | 15.6 |] | | | | | | | | £0.01 | 20.01 | €0.01 | 40,01 LL | | · · · · · · | | | | MW75-99-8 | 20.6 |] | | | 1 . | Ī | 1 | - | | <0.01 | 20.01 | €0.01 | <0.01 | | | 1 | | | MW75-99-8 | 25.7 |] | | | 1 | | | ., | | <0.01 | 10.05 | €0.01 | ×0.01 | *************************************** | | | | | MW75-99-8 | 28.1 |] | | | | | | I | | <0.01 | 20.01 | 18 60 D18 | ₹0.01 | | | | | | MW75-99-8Comp | |] | | <0.005 | <0.005 | #<0,005 | | | 1 | | | Ì | | | · | | 1 | | MW91-4-S1 | 5.0 | Nov-91 | a | <0.005 | €0.005 | <0.005 | | | Ĭ | | | | <u> </u> | | | | | | MW91-4-S2 | 10.0 | | | <0.005 | ₹0.005 | <0.005 | | | Ì | *************************************** | ïI | | | | | | *************************************** | | MW91-4-S3 | 18.5 | | | <0.008 | ₹0.005 | <0.006 | | | | j | 1 | 1 | 1 | | | 1 | | | MW91-4-S4 | 23.5 | | | <0.005 | 14.c0.005 | <0.005 | | | | 1 | i | 1 | | | | -1 | 1 | | MW91-4-S5 | 23.5
34.5 |] | ì | ## AD.ODE | ₹0.005 | : c0,005 | | | | | 1 | 1 | T | 1 | | | 1 | | MW91-4-S6 | | ! | | <0.005 | <0.005 | <0.005 | | i | 1 | · | | 1 | <u> </u> | · · · · · · | | | | | MW91-4-S7 | 44.5
54.5 | <u> </u> | <u></u> | <0.005 ™ | <0.008 | <0.005 | | | 1 | <u> </u> | | | | | | | | = Not analyzed ND - = Not detected above reporting limit (reporting limit shown) = Not detected above reporting limit (reporting limit varies with analyte) BC = Analysis by BC Laboratories Q = Analysis by Quanteq Laboratories CLS = Analysis by California Laboratory Services PRGs for Residential Soil for Detected Organic Analytes (mg/kg) Chlorobenzene=150 1,1,1-TCA=770 1.1-DCE=540 Di-n-butyl phthalate=6,100 1,2,4-trimethylbenzene=5.7 Ethylbenzene=230 1,3,5-trimethylbenzene=21 Melhylene chloride=8.9 Acetona=1600 Toluene=520 trans-1,2-DCE=63 Benzyl alcohol=18,000 xylenes=210 Bis(2-ethylhexyl phthatate=35 Butyl benzyl phthalate=12,000 VOCs analyzed by EPA Method 8010, 8020, or 8260 SVOCs analyzed by EPA Method 8270 PCBs analyzed by EPA Method 8080 Fuel Identification analyzed by EPA Melhod 8015M included: Light Napha, Aviation Fuel, Stoddard/White Spirits, Heavy Napha/Ligroin/Petroleum Benzine, Gasoline, JP4, JP5, JP6, JP8, Kerosene/Jet Fuel, Diesel, Crude/Waste Oll, Hydraulic Oll, and WD-40 Oii & Grease analyzed by EPA Method 413.1 Cyanide analyzed by EPA Method 9012 COPCs = Chemicals of Potential Concern Concentrations shown in bold are above PRGs for residential soit. # Soil Sampling Results (mg/kg) # SWMU 4-3: Building 76 Motor Pool Collection Trenches # Concentrations of Organic Constituents COPCs: Halogenated VOCs, Fuel Hydrocarbons | | | | | | | Aroma | tic VOCs | | Non-Aromatic VOCs | PAH | Fuels | TPH-D | TPH-G | Oil &
Grease | рН | |--|---------------|--------|------|---------|---|--------------|----------|-----------------------------|---|---|---|--|--|-----------------|--| | | | | | Benzene | Toluene | Elhylbenzene | Xylenes | Other Aromatics Detected | | | | | | | | | | | | PFIG | 0.67 | 520 | 230 | 210 | | | | | | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | | | | | | SS76S-12-10° | 10 | RFA | | NO | NO: | 0.009 | 0.016 | | 1,1,1-TCA=0,039 | | THC=1.515 | <u> </u> | | | | | SS76S-13-10' | 10 | RFA | | 1.283 | 3.234 | 0.607 | 2.519 | isopropylbenzene=0.034 | NO | | THC=16.010 | | | | | | SS76-94-01-6 | 6 | Jun-94 | EC | <0.005 | <0.005 | <0.005 | ₹0.01 | | ND | | | €20 | | 17,000 | | | SS76-94-01-11 | 11 | | | <0.005 | <0.005 | <0.005 | <0.01 | | ND | | | ٤10 | Mare I un | 140 | | | SS76-94-01-18 | 1 B | | | <0.005 | ₹0.005 | <0.005 | <0.01 | | NO SEE | *************************************** | | <10 | <1 | 54 | | | SS76-94-01-21 | 21 | | | <0.005 | ₹0.005 | <0.005 | <0.01 | | ייי און | | | <10 | WH2100 | 9.8 | | | SS76-94-02-6 | 6 | | | <0.005 | <0.005 | ×0.005 | # <0.01 | | | | | <10 | T15021150 | 270 | 1 | | \$\$76-94-02-15.5 | 15.5 | | | | 1. | | | | | | | ±10 | W <1 | 90 | | | SS76-94-02-16 | 16 | | | <0.005 | <0.005 | <0.005 | <0.01 | • | Freon-12=0.0064 | | | | | | ··· | | | | | | | | | | | Freon-113=0.007 | | | | | | | | SS76-94-02-20.5 | 20.5 | | | <0:005 | <0.005 | <0.005 | <0.01 | | Freon-12=0.016 | | | ·c10 | 415- <1 /40 | 92 | 1 | | SS76-94-03-5 | 5 | | | < 0.005 | <0.005 | <0.005 | <0.01 | | NO | | | <10 | c1 | €20 | | | SS76-94-03-10 | 10 | | | <0.005 | <0.005 | <0.005 | <0.01 | | ND III | | | <10 | (1 × 1 | <20 | | | SS76-94-03-15.5 | 15.5 | . | | <0.005 | <0.005 | <0.005 | <0.01 | - | NO SEE | | | | | | | | SS76-94-03-16 | 16 | | | | | | | | | | *************************************** | <10 | - 141 | <20 | | | 5576-94-03-20.5 | 20.5 | | | <0.005 | <0.006 | <0.005 | <0.01 | | MD THE RESERVE | | | | | | | | SS76-94-03-21 | 21 | | | | | | | | | | | 210 | induz en mis | <20 | | | SB76-95-1-3.1 | 3.1 | Jun-95 | BC | | | | | | | | | | | ∰ €20 | | | SB76-95-1-7 | 7 | | | | 1 | Ì | | | | | | | | 26 | 1 | | SB76-95-1-11 | 11 | | | <0.005 | <0.005 | | <0.01 | | PCE=0.020 | | Diesel=11 | | | <20 | 7.68 | | SB76-95-1-16.5 | 16.5 | | | | |
 | | | | | | <u> </u> | ₹20 | | | SB76-95-1-21 | 21 | | | <0.005 | <0.005 | ₩ <0.005 | 1.<0.01 | * | T RCE=0.0072 | | Diesel=10 | | | <20 | 8.75 | | SB76-95-1-25 | 25 | | | | | | | | | | | · | <u> </u> | 70 | U.1. U | | SB76-95-2-3.7 | 3.7 | | | | | | | | | | | | † | 98 | | | SB76-95-2-4.7 | 4.7 | | | | | | | | | - | | | 1 | <20 | | | SB76-95-2-10.4 | 10.4 | | | <0.005 | <0.005 | <0.005 | <0.01 | | NO | | ND | i | <u> </u> | 32 | 7.76 | | SB76-95-2-15.7 | 15.7 | | | | 1 | | | | | | | | | 46 | | | SB76-95-2-20.7 | 20.7 | | | <0.005H | €0.005 | ₹0.005 | ₹0.01 | | NO NO | | NO | | | 34 | B.34 | | SB76-95-2-25.2 | 25.2 | | | | | | | | | | | | | 56 | | | SB76-95-3-3 | 3 | | | | | | | | | | | | | 190 | | | SB76-95-3-5.3 | 5.3 | | | | | | | | 1 | | | | | 30 | 1 | | SB76-95-3-8.3 | 8.3 | | | | | | | | 1 | | | | | 600 | | | SB76-95-3-10.5 | 10.5 | | | 0.54 | < 0.006 | 1.0 | 1.1 | sec-butylbenzene=0.14 | ESSENDATE NO ATENDRALE | | Diesel=830 | | | 490 | 8.23 | | ny n | | | | | *************************************** | | | isopropylbenzene=0.26 | | | | | | 1 400 | 0.20 | | - Landanian Company | | | | | | | | p-isopropyltoluene=0.37 | | | | | | | | | | | | | | | | | naphthalene=0.83 | | | | 1 | 1 | | 1 | | The same of sa | | | | | | | | n-propylbenzene=0.77 | | | | | | | | | l man | | | | | | | | 1,2,4-trimethylbenzene=0.56 | | | | | 1 | | | | - Committee | | | | l | 1 | | | 1,3,5-trimethylbenzene=1.3 | | | | | 1 | | | | S876-95-3-15.5 | 15.5 | | | | | | | | | | | | | 170 | 1 | | SB76-95-3-20.7 | 20.7 | | | <0.005 | 7 005 | <0.005 | <0.01 | | ND | | Diesel=11 | | | 44 | B.37 | # Soil Sampling Results (mg/kg) # SWMU 4-3: Building 76 Motor Pool Collection Trenches # **Concentrations of Organic Constituents** COPCs: Halogenated VOCs, Fuel Hydrocarbons | | | | | | | Aroma | tic VOCs | , , , | Non-Aromatic VOCs | РАН | Fuels | TPH-D | TPH-G | Oil &
Grease | рН | |----------------|---------------|--------|-----|---|--------------------|---------------|-------------------|--|---|---|---|---------------------------------------|--------------|-----------------|------| | | | | | Benzene | Toluene | Ethylbenzene | Xylenes | Other Aromatics Detected | | | | | | | | | | | | PRG | 0.67 | 520 | 230 | 210 | | | *************************************** | | | | | | | Sample ID | Depth
(ft) | Date | Lab | | | M | • | | | | | f | | 1 <u></u> | | | SB76-95-3-26 | 26 | Jun-95 | EC | | | | | | | | | <u> </u> | | 190 | | | SB76-95-4-3 | 3 | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | 940 | | | SB76-95-4-7.3 | 7.3 | · | | | | | | | | | | | | 68 | | | S876-95-4-10.3 | 10.3 | | | <0.005 | <0.005 | <0.005 | <0.01 | | A STATE OF LABOR. | · · · · · · · · · · · · · · · · · · · | ND | | | 42 | 7.47 | | SB76-95-4-15.6 | 15.6 | | | | | | | | | *************************************** | | | | <20 | | | S876-95-4-21 | 21 | | | <0.005 | <0.005 | <0.005 | <0.01 | | AND | · | Diesel=10 | | | <20 | 8.66 | | S876-95-5-3 | 3 | | | | | | | | | | *************************************** | | | 2000 | | | SB76-95-5-6.9 | 6.9 | | | | | | | | | | | | | <20 | | | SB76-96-1-2.5 | 2.5 | Oct-96 | CLS | <0.005 | <0.006 | <0.005 | <0.005 | NA | | ND | Motor Oil=6.9 | 11 | <1.0 | | | | SB76-96-1A-2 | 2 | | | <0.005 | <0.005 | <0.005 | i.<0.005 | NA | | NO. | Motor Oil=21 | <4.0 | €1.0 | | | | SB76-96-1A-5.5 | 5.5 | | | ⊭ <0.005 | <0.005 | <0.005 | <0.005 | NA | | NO | Motor Oil=25 | <4.0 | <1.0 | | | | SB76-97-1-0.0 | | Feb-97 | BC | <0.05 | <0.05 | ₹0 ,05 | V 6 7 | | NO. | anthracene=0.023
fluoranthene=0.27
phenanthrene=0.24 | | 450 | 4 (1)
(1) | | | | SB76-97-1-3.5 | 3.5 | | | | €0,005 | 0.11 | 0.029 | naphthalene=0.94
n-butylbenzene=0.18 | | anthracene=0.12
fluoranthene=1.5 | | 4000 | 61 | | | | | | | | | | | | sec-butylbenzene=0.056
Isopropylbenzene=0.051
n-propylbenzene=0.16 | | phenanthrene=1.5 | | | | | | | | | | | *************************************** | | | | p-isopropyltoluene=0,053 | | | | | | | | | | | | | İ | | | | 1,2,4-trimethylbenzene=0.08 | | | | | | | | | | ļ | | | 2.52002410411025021001 | ante diseant succe | | 22100000000000000 | 1,3,5-trimethy/benzene=0.12 | programme speciments | ** | | | | | | | SB76-97-1-7.5 | 7.5 | | | ₹0:0 05 | ₹0.00 5 | <0.005 | <0,01 | naphihalene=0.0052
1,2,4-trimethylbenzene=0.011 | ON | acenaphihylene=0.11
chrysene=0.030
phenanthrene=0,014 | | 15 | 1.3 | | | | SB76-97-1-11.5 | 11.5 | | | | | | | | NO PROPERTY. | מא | | 41 | <1 | | | = Not analyzed = Not detected above reporting fimit (reporting fimit shown) = Not detected above reporting limit (reporting limit varies with analyte) BC = Analysis by BC Laboratories CLS = Analysis by California Laboratory Services ## PRGs for Residential Soll for Detected Organic Analytes (mg/kg) 1,1,1-TCA=770 fluoranthene=2300 Freon-113=5600 naphthalene=56 PCE=5700 1,2,4-trimethylbenzene=5.7 1,3,5-trimethylbenzene=21 Freon-12=94 sec-butylbenzene=110 anthracene=22,000 chrysene=62 isopropylbenzene=160 n-propylbenzene=140 VOCs analyzed by EPA Method 8240, 8020, or 8260 PAHs analyzed by EPA Method 8310 Fuel Identification analyzed by EPA Method 8015M Included: Light Naptha, Aviation Fuel, Stoddard/White Spirits, Heavy Naptha/Ligroin/ Petroleum Benzine, Gasoline, JP4, JP5, JP6, JP6, Kerosene/Jet Fuel, Diesel, Crude/Waste Oil, Hydraulic Oil, and WD-40 TPH-Diesel and Gasoline analyzed by EPA Method 8015M Oil & Grease analyzed by EPA Method 413.1 pH analyzed by EPA Method 9040 COPCs = Chemicals of Potential Concern # Soil Sampling Results (mg/kg) # SWMU 5-4: Building 77 Plating Shop Floor and Sump Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, Fuel Hydrocarbons, Cyanide SVOCs TPH-Diesel TPH-Gasoline Cyanide pН VOCs | | | | | PŒ | Other Compounds Detected | | | | | | |----------------------|---------------|--------|-----|--------|--|-------------------------|-----|--|--------|------| | | | | PRG | 5.7 | | | | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | · | | | BS77Plate-94-01-1.5 | 1.5 | Jun-94 | BC | | | | | | <1 | 8.65 | | BS77Plate-94-01-2 | 2 | | | 0.50 | TCE=0.013 | | <10 | < t | | | | BS77Plate-94-01-6.5 | 6.5 | | | 0.041 | | | <10 | 2 1 | <1 | | | BS77Plate-94-01-10.5 | 10.5 | | | <0.005 | | | <10 | <1 ×1 | <1 | | | BS77Plate-94-02-1 | 1 |] | | 0.015 | | | <10 | <1 | <1 | 8.66 | | BS77Plate-94-02-3 | 3 | | | 0.12 | 1,1-DCA=0.0053
1,1,1-TCA=0.035 | | <10 | 4 | <1 | | | BS77Plate-94-02-6 | 6 | | | 0.12 | | | <10 | <1 | <1 | | | BS77Plate-94-02-8 | 8 | | | 0.036 | | | <10 | <1 | <1 | | | BS77Plate-94-03-1 | 1 | | | 0.040 | | | <10 | <1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A | <1 | 8.49 | | BS77Plate-94-03-3 | 3 |] | | 0.036 | | | <10 | <1 | <1 | | | BS77Plate-94-03-6 | 6 | | | 0.067 | | | <10 | <1 | 1 × 21 | | | BS77Plate-94-03-8 | 8 | | | 0.11 | TCE=0.013 | | <10 | er er | <1:00 | | | BS77Plate-94-04-1 | 1 | | | <0.005 | | | <10 | <1 | <1 | 8.07 | | BS77Plate-94-04-3 | 3 | | | 0.013 | | | <10 | 41 141 | <1 | 0.07 | | BS77Plate-94-04-6 | 6 | | | 0.012 | | | <10 | 4 1 | <1 | | | BS77Plate-94-04-8 | 8 |] | | 0.015 | | | <10 | < (1) | <1. | | | BS77Plate-94-05-1 | 1 | | | 0.051 | | | <10 | <t< td=""><td><1</td><td>7.96</td></t<> | <1 | 7.96 | | BS77Plate-94-05-3 | 3 |] | | 0.016 | | | <10 | <1 | <1 | | | BS77Plate-94-05-6 | 6 | | | 0.063 | | | <10 | 21 | <1 | | | BS77Plate-94-05-9 | 8 | | | 0.041 | | | <10 | <1 | <1 | | | SS-77PIExc-98-1-1.8 | 1.8 | Dec-98 | BC | <0.005 | Methylene chloride=0.012
Styrene=0.0092 | Dimethyl phthalate=0.11 | | | <0.5 | | # Soil Sampling Results (mg/kg) # SWMU 5-4: Building 77 Plating Shop Floor and Sump Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, Fuel Hydrocarbons, Cyanide | | | | | | VOCs | SVOCs | TPH-Diesel | TPH-Gasoline | Cyanide | pН | |-------------------|---------------|--------|-----|----------|---------------------------------------|-------|------------|--------------|---------|---------------------------------------| | | | | | PŒ | Other Compounds Detected | | , ,,, | | | | | | | | PRG | 5.7 | | | ,,,,,,, | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | SS-77PIExc-98-2-2 | 2 | Dec-98 | BC | 0.020 | Benzene=0.039
Ethyl Benzene=0.0060 | ND | | | <0.5 | | | SS-77-99-1-1.7 | 1.7 | Dec-99 | BC | <0.005 | | | | | 1 | | | SS-77-99-3-1.7 | 1.7 | | | <0.005 | | | | | | | | SS-77-99-4-1.6 | 1.6 | | | <0.005 | | | | | | | | SS-77-99-5-1.7 | 1.7 | | | <0.005 | | | | | | | | SS-77-00-2-1.4 | 1.4 | Apr-00 | BC | ₩ <0.005 | | | | | <0.5 | | | SS-77-00-3-1.5 | 1.5 | · | | 0.012 | | | | · | <0.5 | | | SS-77-00-4-1.5 | 1.5 | | | <0.005 | | | | | <0.5 | | | SS-77-00-5-1.3 | 1.3 | | | 0.0091 | | | | | <0.5 | | | SS-77-00-6-1.5 | 1.5 | | | 0.042 | | | | | <0.5 | | | SS-77-00-7-1.8 | 1.8 | | | 0.023 | | | | , | | | | SS-77-00-8-1.8 | 1.8 | | | ₹0.005 | | | | | | | | SS-77-00-9-1.9 | 1.9 | | | <0.005 | | | | | | · · · · · · · · · · · · · · · · · · · | | SS-77-00-11-1.4 | 1.4 | | | <0.005 | | | | | <0.5 | | | SS-77-00-10-1.5 | 1.5 | | | <0.005 | p-isopropyltoluene=0.0056 | | | | | | = Not analyzed = Not detected above reporting limit (reporting limit shown) PRGs for Residential Soil for Detected Organic Analytes (mg/kg) 1,1,1-TCA=770 1,1-DCA=590 Benzene=0.67 Dimethyl phthalate=100,000 Ethylbenzene=230 Methylene chloride=8.9 Styrene=1700 TCE=2.8 BC = Analysis by BC Laboratories COPCs = Chemicals of Potential Concern VOCs analyzed by EPA Method 8260 SVOCs analyzed by EPA Method 8270 TPH-Diesel and Gasoline analyzed by EPA Method 8015M
Cyanide analyzed by EPA Method 9012 pH analyzed by EPA Method 9040 # Soil Sampling Results (mg/kg) # AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs # Concentrations of Organic Constituents COPCs: Halogenated VOCs, Fuel Hydrocarbons | Sample ID Depth (ft) SS76S-12-10' 10 SS76S-13-10' 10 SW-1 4 T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-S2 14.5 T3-SW 10.5 B876-92-25-5.5 5.5 | RFA
RFA
Nov-9 | | Benzene
0.67 | Taluene
520 | Ethylbenzene
230 | Xylenes
210 | Other Aromatics Detected | | | | TPH-Gas | PAH | Grease | pH | |--|---------------------|---------|--|---|--|--|---|--|-----------------|------------|---------------------|---|-------------|--------------| | Sample ID (ft) SS76S-12-10" 10 SS76S-13-10" 10 SW-1 4 T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-S2 14.5 T3-SW 10.5 | RFA
RFA | e Lab | 0.67 | | | | Other Alomatics Detected | | | | 1 1 | | ı | 1 | | Sample D (ft) SS76S-12-10" 10 SS76S-13-10" 10 SW-1 4 T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-S2 14-5 T3-SW 10.5 | RFA
RFA | e Lab | | 1 520 | , 250 | | | | | | | | | | | Sample D (ft) SS76S-12-10" 10 SS76S-13-10" 10 SW-1 4 T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-S2 14-5 T3-SW 10.5 | RFA
RFA | | ND I | | | 2.10 | | | | | 11 | | ! | | | SS76S-13-10' 10 SW-1 4 T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-S2 14.5 T3-SW 10.5 | RFA | | iii ND | | | | | | | | | | | | | SW-1 4 T2-W1 1 4 T2-E1 1 4 T3-W1 1 4 T3-E1 1 4 T3-S2 14.5 T3-SW 10.5 | ··· · | | | ial ND | 0.009 | 0.016 | | 1,1,1-TCA=0.039 | | THC=1.515 | | | ŀ | • | | T2-W1 14 T2-E1 14 T3-W1 14 T3-E1 14 T3-E1 14 T3-S2 14.5 T3-SW 10.5 | Nov-9 | on s | 1.283 | 3.234 | 0.607 | 2.519 | isopropylbenzena=0.034 | | | THC=16.010 | | | | | | T2-E1 1.4 T3-W1 1.4 T3-E1 1.4 T3-S2 14.5 T3-SW 10.5 | | | 0.016 | 0.026 | 0.006 | 0.03 | | | | 3.7 | <1 | | | 1 | | T3-W1 14 T3-E1 14 T3-S2 14.5 T3-SW 10.5 | | | 0.006 | 0.008 | <0.005 | 0.007 | | | | | <1 | | | 1 | | T3-E1 14
T3-S2 14.5
T3-SW 10.5 | | | 0.008 | 0.015 | <0.005 | 0,018 | | | | | <1 | | 1110 | 1 | | T3-S2 14.5
T3-SW 10.5 | | 1 | 0.22 | 0.03 | <0.010 | 0.042 | | | | 15 | 5.3 | | | 1 | | T3-SW 10.5 | | | 0.038 | 0.053 | <0.013 | 0.057 | · | | | 7.3 | 1.7 | | | 1 | | | Nov-9 | 90 AE | ND | NO: | ND | ND | | | | NO. | NO | | ···· | | | BS76-92-25-5 5 5 5 | | | | NO | | NO. | | | | 4,500 | NO | | j | | | 20,0 32-20-0.0 | Sep-9 | 92 C | | - <0.005 | <0.005 | #40.005 | | PERSONAL NO DE CONSER. | | | <1 | | | 1 | | BS76-92-25-16 16 | _ | | | <0.005 | <0.005 | #20.005# | | ND ND | | | | | | | | BS76-92-25-26 26 | | | <0.005 | 20.005** | | ₹0.005 1 | | Chlorotorm=0,026 | | | | | | | | BS76-92-25-36 36 | | | <0.005 | <0.005 | M=401005 M | €0.005 | | Chloroform=0.047 | | | | | | 1 | | BS76-93-7-5.5 5.5 | Aug-9 | 93 C | (3 ×0.005 | | 10,1<0,005 int | ₩ <0:005 | | College of ND | | <1 | <1 | | ⊕ <50° | 1 | | BS76-93-7-15.5 15.5 | ┙ | - 1 | | <0.005 | - €0.005 da | < 0.005 ₩ | | ACCOUNT NO SECURE | | <1 | <1 | | <50 | T | | BS76-93-7-26 2.6 | _ | | €0.005 | | <0.005 | | | ND | | <1 | :::::<1:::: | | <50 | | | BS76-93-7-35.5 35.5 | | | <0.005 | <0.005 | ≺0.005 | <0.005 | | ND | | <1 | <1 | | <50 | T | | SS76-94-01-6 6 | _ Jun-€ | 94 BC | €0:005 | €0.005 | ii≪0:006 | HARMON CONTRACTOR CONTRACTOR | | ND ND | | <20 | <1` | | 17,000 |) | | SS76-94-01-11 11 | _ | | <0.005 | <0.005 | <0.006 | <0.01 | · | ND | | <10 | <1 | | 140 | | | SS76-94-01-18 18 | 4 | | <0.005 | | ••••••••••••••••••••••••••••••••••••• | ₹0.01 | | ND | | <10 | <1 | | 54 | | | SS76-94-01-21 21 | _ | | = <0.005 | | <0.005 | <0.01 | | ND | | <10 | <1 | | 98 | | | SS76-94-02-6 6 | 4 | | ×0.005 | √<0.005 | <0.005 | ¥0.01 | North and Andreas | ND | | <10 | <1 | | 270 | | | SS76-94-02-15.5 15.5 | | | | China de la companione | | | | | | <10 | <1 | | 90 | | | SS76-94-02-16 16 | | | <0.005 | <0.005 | KO 01 | ₹0.005 | | Freon-12=0.0064 | | | | | 1 | 1 | | | 4 | | | | | | | Freun-113=0.007 | _ | | | | | | | SS76-94-02-20.5 20.5 | 4 | | ## (0.005 | <0:005 | <0.005 | | www. | Freon-12=0,016 | | <10 | 196 <1 66 | *************************************** | 92 | | | SS76-94-03-5 5 | 4 | | <0.005 | <0.005 | <0,005 □ | ₹0.01 | | ND | | <10 | <1 | | <20 | | | SS76-94-03-10 10 | 4 | | <0.005 | <0.005 | <0.005 | .: ≥0.01 | *************************************** | ND ND | | <10 | <1 | ***** | <20 | | | S\$76-94-03-15.5 15.5 | _ | į | <0.005 | <0.005 | ₹0.005 | €0.01 | | ND | | | | | | | | SS76-94-03-16 16 | | | (4):44-0-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | Total and a second sectors | | NSS14400110/117/15996 | | manufactures at a 22 cm of 1000 | | <10 | < 1 | | <20 | 4 | | SS76-94-03-20.5 20.5 | | - | <0.005 | <0.005 | <0.005 | ****<0:01:45 | | NO CONTRACTOR | | | | | | — | | SS76-94-03-21 21 | + | | | | | | | | | <10 | <1 | | <20 | | | BS-SB-76-95-1-3.1 3.1 | Jun-9 | 95 BC | | | ļ | | | | | | | | <20 | <u> </u> | | BS-SB-76-95-1-7 7 | - | | ******************* | SEGRESAL CONTRACTOR CONTRACTOR | - COMPANIENT PERSONNE VENEZ CANCIAN | FERROZEA ATERIJE DO SKIBIJA. | | | | | | | 26 | | | BS-SB-76-95-1-11 11 | - | İ | ₹0.005 | <0.005 | <0.005 Hit | <0.01 | | PCE=0.020 | Diesel≂11 | | | | <20 | 7.68 | | BS-SB-76-95-1-16.5 16.5 | - | - } | STREET | TOTAL PROPERTY. | ing normal and in fact. | 88.09 4 022406 | ****** | | B/ / :- | | | | <20 | | | BS-SB-76-95-1-21 21 | - | | <0.005 | <0.005 | 4<0.006 iiii | <0.01 | | PCE=0.0072 | Diesel=10 | | | | <20 | 8.75 | | BS-SB-76-95-1-25 25 | \dashv | | - | | - | | ** | | | | | | 7.0 | | | BS-SB-76-95-2-3.7 3.7
BS-SB-76-95-2-4.7 4.7 | | | | | | | | | | | | | 98 | | | | | | <0.005 | 100 A 862 | lana again | (Martin Caracal Caraca | | and the state of the state of the state of | | **** | | | <20 | 4 | | BS-SB-76-95-2-10.4 10.4
BS-SB-76-95-2-15.7 15.7 | - | | 86 <01005 (6) | <0.005 | <0.005 | <0.01 | | ND ND | ND | | ļ <u>-</u> | | 32 | 7.76 | | | | | | 100000 | <0.005 | antegraryinan | | jásássák ette No jur (jásákset). | | | | | 46 | + | | BS-SB-76-95-2-20.7 20.7
BS-SB-76-95-2-25.2 25.2 | | | <0.005 | I SE KULUUD IN | - KULUUD | <0.01 | | ND | ND deliberation | | | *************************************** | 34
56 | 8.34 | # Table C3.4-1 Soil Sampling Results (mg/kg) # AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs # Concentrations of Organic Constituents COPCs: Halogenated VOCs, Fuel Hydrocarbons | | | | | | | | | | | | | | | Oil & | | |--------------------|---------------|--------|--------------|---------------|---|--------------|----------------------|---
--|---------------------|---------------------------------------|------------------|--|----------|----------| | | | | | | Ι | | atic VOCs | | Non-Aromatic VOCs | Fuel Identification | TPH-Diesel | TPH-Gas | PAH | Grease | pН | | | | | | Benzene | Toluene | Ethylbenzene | | Other Aromatics Detected | | | | | | | L | | | · | | PRG | 0.67 | 520 | 230 | 210 | | | | <u> </u> | <u> </u> | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | | | | | | BS-SB-76-95-3-3 | 3 | Jun-95 | EC | | | , i | | | | | | | | 190 | | | BS-SB-76-95-3-5.3 | 5.3 | | | | | | | | | | | | | 30 | | | BS-SB-76-95-3-8.3 | 8.3 | | | | | | | | | | | | | 600 | | | BS-SB-76-95-3-10.5 | 10.5 | | | 0.54 | iii €0.05 iiii | 1.0 | 1.1 | sec-bulyibenzene=0.14
isopropyibenzene=0.26
p-isopropyitoluene=0.37
naphthalene=0.83 | With the second considerable of consi | Diesel=830 | | | | 490 | 8.23 | | | | | | | *************************************** | | | n-propylbenzene=0.77 1,2,4-trimethylbenzene=0.56 1,3,5-trimethylbenzene=1,3 | | | | | | | | | BS-SB-76-95-3-15.5 | 15.5 | | | | | | | | | | | | | 170 | | | BS-SB-76-95-3-20.7 | 20.7 | | | €0.005 | c0:005 | <0.005 | # KO:01# | | alian in Ear no and an any an | Diesel=11 | | 1 | | 44 | B.37 | | BS-SB-76-95-3-26 | 26 | | | | <u> </u> | | | | | | | | | 190 | | | BS-SB-76-95-4-3 | 3 | | | | | | | | | " | | | | 940 | | | BS-SB-76-95-4-7.3 | 7.3 | | | | | | | | | | | | | 68 | | | BS-SB-76-95-4-10.3 | 10.3 | | | | <0.005 | -i-<0.005 | ⊉ 10.01 | | ND | Zia ND | | | | 42 | 7,47 | | BS-SB-76-95-4-15.6 | 15.6 | | | | | | | | | | | | | <20 | | | BS-SB-76-95-4-21 | 21 | | | <0.005 | <0.005 | <0.005 | ₹0.01 | | ND ND | Diesel=10 | | | | <20 | 8.66 | | BS-SB-76-95-5-3 | 3 | | | | | | | | | | | | | 2,000 | | | BS-SB-76-95-5-6.9 | 6.9 | | | | | | | | | <u> </u> | | | | <20 | | | BS-W76-97-3-16 | 16 | Feb-97 | BC | | iii<0.005 | | | · · · · · · · · · · · · · · · · · · · | ND | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 22. <1 | Per la Cara ND In the Table | | | | BS-W76-97-3-21 | 21 | | | <0.005 | <0.005 | ₹0.005 W | <0.01 | | PERSONAL MODERNICATIONS | | 1.4 | <1 | ND. | | I | | BS-W76-97-3-26 | 26 | | | ₹0.005 | <0.005 | i#i⊀0.006 | # 10:03 # | | ND | | 1.2 | <1 | A SERVICE NO REPORT OF THE PARTY PART | | | | BS-W76-97-3-31 | 31 | | | ₹0:005 | ₹0.005 | | 20.01 | | of the composition | | 1.8 | <1 | Eri of element ND / Sciric | | | | BS-W76-97-3-36 | 36 | | | <0.005 | <0.005≈ | <0.006 | | | ND | | <100° | <1 | MD MO | | | | BS-W76-97-4-16 | 16 | | | 2 < 0.005 | €0.005 | <0.005 | £0.01:4 | | ND | | 1.5 | <1 | ROPERA PROTECTION DANGERS AS A SECOND | <u> </u> | | | BS-W76-97-4-21 | 21 | | | <0.005 | | <0.006 | ₹0.01 | | ND | | 1.8 | <1 | 担心と 部 / ND 社 | ļ | <u> </u> | | BS-W76-97-4-26 | 5.6 | | | <0.005 | | | i≓k0.01⊞ | sec-butylbenzene=0.0059 | THE PERMIT | | 310 | 5.6 | Anthracene=0.011
Fluoranthene=0.21
Phenanthrene=0.028 | | | | BS-W76-97-4-31 | 31 | | | <0.005 | | ,, | <0.01 | | ND ND | | 2.6 | <1 | ND nd | | | | BS-W76-97-4-38.5 | 38.5 | | | 40.005 | K0.005 | | ₹0.01 | | ND | 1 | 3.1 | <1 | ND* | | | | BS-W76-97-5-16 | 16 | | | <0.008 | <0.005 | <0.005 | <0.01 | | ND | ļ | <1 | <1 | Benzo(b)fluoranthene=0.012 | | | | BS-W76-97-5-21 | 21 | | | <0.005 | ≈0.005 | 40.005 | ₹0.01 | * | ND | <u> </u> | 图 / <1/20 | <1 | Benzo(b)fluoranthene=0.0084 | | | | BS-W76-97-5-26 | 26 | | | @<0.005 | €0.005 | <0.005 4 | | T100 | TOSSEC TO NO. | ļ | 150 c < 1 5 0 | <1 | EStrate ND - 1 - 6 - 1 - 1 | <u> </u> | 4 | | BS-W76-97-5-31 | 31 | | | <0.005⊕ | -#<0:005 | e0.005 | ÷:c0.01 | | ND ND | | - <1 · · · | <1 | ND | | 1 | | BS-W76-97-5-35 | 3.5 | F | | #<0.005≈ | <0.005 | | //:1<0/01 | | ND | | 20 <1 -1 | · ·<1 | ND | <u> </u> | | | BS-SB76-97-1-0 | 0 | Feb-97 | BC | <0.05 | <0.05 | (1,00,05 | E ≥011 E | | ZELETE NO. | | 450 | : <1:° | Anthracene=0.023
Fluoranthene=0.27
Phenanthrene=0.24 | | | # Soil Sampling Results (mg/kg) # AOC 4-1, 4-2: Building 76 Former Diesel and Gasoline USTs # Concentrations of Organic Constituents COPCs: Halogenated VOCs, Fuel Hydrocarbons Aromatic VOCs Non-Aromatic VOCs Fuel Identification TPH-Diesel TPH-Gas PAH Grease pH Benzene Toluene Ethylbenzene Xylenes Other Aromatics Detected PPG 0.67 520 230 210 Union Control of the | | | | 17763 | U.67 | 520 | 230 | 210 | <u> </u> | | 1 | | I I | | |-------------------|---------------|--------|-------|------------------|--|--------|---------|------------------------------|---|-------|-----|---------------------|--------| | Sample ID | Depth
(ft) | Date | Lab | | | | | | | | | , |
-1 | | BS-SB76-97-1-3.5 | 3.5 | Feb-97 | EC | ::≤0 :Q05 | ±0,005 | 0.11 | 0.029 | n-butylbenzene=0.18 | ND | 4,000 | 61 | Anthracene=0.12 | | | | | | | | | | | sec-butylbenzene=0.056 | | | | Fluoranthene=1.5 | | | | | | | | | | | lsopropylbenzene=0.051 | | | | Phenanthrene=1.5 | | | | | | | | | | | p-Isopropyltotuene=0,053 | | | | <u>"</u> | | | | | | | 1 | | | | Naphthalene=0.94 | | | | | | | | | | | | | | | n-Propylbenzene=0.16 | 1 | | | | | | | | | | | | | | 1,2,4-Trimethylbenzene=0.08 | | | | | | | | | ! | | | | | | 1,3,5-Trimethylbenzene=0.12 | | | | <u> </u> | | | BS-SB76-97-1-7.5 | 7.5 | | | €0,005 | <0.005 | <0.005 | 40.01 B | Naphthalene=0.0052 | ND | 15 | 1.3 | Acenaphthylene=0.11 | | | | | | | Į. | 1 | | | 1,2,4-Trimethylbenzene=0,011 | | | | Chrysene=0.03 | | | | 1 | | | | | | | | | | | Phenanthrene=0.014 | | | BS-SB76-97-1-11.5 | 11.5 | | | ļ | <u> </u> | | | | ND | | <1 | ND I | | | BS-SB76-97-2-3.5 | 3.5 | | | 0.33 | ≤0.2 | 1,6 | 1.6 | п-butyibenzene=0.71 | ND | 6100 | 420 | Phenanthrene=6.0 | | | | | | | 1 | j . | | | sec-butylbenzene=0.27 | | | | | | | | | | | 1 | } | | | lsopropylbenzene=0.28 | | | | · · · | | | | | | | |] | | | Naphthalene=3.7 |
*** | | | | | | | | | | | | | | n-Propylbenzene=0.95 | *************************************** | | | | | | | | 1 | | | | | | 1,2,4-Trimethylbenzene=1.8 | *************************************** | | | | | | | | ĺ | | | | | | 1,3,5-Trimethylbenzene=1,2 | | | | | | | BS-SB76-97-2-7.5 | 7.5 | | | # c0.03 | <0.03 | | ₩<0.06 | Naphthalene=0,042 | | 280 | 7.7 | Phenanthrene=0.4 | | | BS-SB76-97-2-11.5 | 11.5 | | | <0.005 | <0.005 | c0.005 | <0.01 | | GESERATE ND POST TO LEG | 3 | <1 | Chrysene=0.023 | | = Not = Not analyzed = Not detected above reporting limit (reporting limit shown) NO detected above reporting limit (reporting limit varies with analyte) BC = Analysis by BC Laboratories AE = Analysis by American Environmental Laboratories S = Analysis by Sequoia Analytical VOCs analyzed by EPA Method 8240 or 8260 Fuel Identification analyzed by EPA Method B015M Included: Light Naptha, Aviation Fuel, Stoddard/White Spirits, Heavy Naptha/Ligroin/Petroleum Benzine, Gasoline, JP4, JP5, JP6, JP8, Kerosene/Jet Fuel, Diesel, Crude/Waste Oil, Hydraulic Oil, and WD-40 TPH-Diesel and Gasoline analyzed by EPA Method 8015M PAHs analyzed by EPA Method 8310 Oil & Grease analyzed by EPA Method 413.1 pH analyzed by EPA Method 9040 COPCs = Chemicals of Potential Concern Concentrations shown in bold are above PRGs for residential soil, PRGs for Residential Soil for Detected Organic Analytes (mg/kg) 1.1.1-TCA=770 Freon-113=5600 1.2.4-trimethylbenzene=5.7 Freon-12=94 1.3.5-tr/methylbenzene=21 isopropylbenzene=160 anthracene=22,000 n-propylbenzene=140 benzo(b)fluoranthene=0.62 naphthalene=56 Chloroform=0.24 PCE=5700 chrysene=62 sec-butylbenzene=110 fluoranthene=2300 # Soil Sampling Results (mg/kg) # AOC 5-4: Building 77 Sanitary Sewer System # Concentrations of Organic Constituents and Cyanide | | | | | | | voc | S | | BTEX | Fuel Identification | Oil &
Grease | Cyanlde | |-----------------|---------------|--------|-----|----------------------|---------------|--|-------------------------|--------------------------|--------|---------------------|-----------------|---------------------| | | | | | cis 1,2-DCE | 1,1-DCA | POE | TCE | Other Compounds Detected | | | | | | | | | PRG | 43 | 590 | 5.7 | 2.8 | | | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | | <u> </u> | | | | SS77S-19-9.0 | 9 | RFA | | | | ND | III ND | | | ND (THC) | | | | SS77E-04C-? | . "' | RFA | | MD | # ND | 0.014 | ND: | | | THC=0.07 | | | | SS77E-3-6.5 | 6.5 | Feb-92 | Q | 0.011 | 0.024 | 0.007 | ### <0.005 ## | | | | | | | BS79-1-15.5 | 15.5 | Aug-92 | C | <0:005 | ≈0.005 | <0.005 | <0.005 | | | | | | | BS79-2-11.5 | 11.5 | | | <0.005 | <0.005 | ************** | <0.005 | | | | | | | BS79-2-18.5 | 18.5 | | | ************* | | ************************************* | ##K0.005 | Chlorofarm=0.0083 | | | | | | MW91-1-5 | 5 | May-91 | MT | <0.005 | <0.005 | <0.005 | <0.005 | | | | | <0.4 | | MW91-1-10 | 10 | | | <0.005 | <0.005 | 40.005 | <0.005 | | | | | <0.4 | | MW91-1-15 | 15 | | | <0.005 | | | ₹0.005 | | | | | ≼0.4 | | MW91-1-20 | 20 | | | <0.005 | | <0.005 | | | | | | <0,4 | | MW91-1-25 | 25 | | | <0.005 | | <0.005 | <0.005 | | | | | <0,4 | | MW91-1-31.5 | 31.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | 1,0 | | MW91-1-35 | 35 | | | <0.005 | <0.005 | | # 0.005 | | | | | <0.4 | | MW91-1-39.5 | 39.5 | | | <0.005 | | <0.005 | # 40:005 | | | | | # (# <0.4 | | MW91-2-5 | 5 | May-91 | MT | ₩ 4 0.005 | | ##<0.005 | | | | | | | | MW91-2-10 | 10 | | | <0.005 | <0.005 | W-0.005 | ₹0,005 | | | | | | | MW91-2-15 | 15 | | | <0.005 | < 0.005 | ₹0.005 | <0.005 | | | | | | | MW91-2-20 | 20 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | | MW91-2-30.5 | 30.5 | | | <0.005 | | <0.005 | <0.005 | | | | | | | MW91-2-35.5 | 35.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | | MW91-2-40.5 | 40.5 | | | <0.005 | <0.005 | ₩ . <0.005 | <0.005 | | | | | | | MW91-2-45 | 45 | | | <0.005 | <0.005 | ₩ < 0.005 | <0.005 | | | | | | | MW91-2-60.5 | 60.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | | MW77-92-10-5.8 | 5.8 | Mar-92 | Q | <0.005 | <0.005 | | <0.005 | | ND: | | | | | MW77-92-10-10.5 | 10.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | ND. | | | | | MW77-92-10-15.3 | 15.3 | | | <0.005 | <0.005 | <0.005 | <0.005 | | ND | | | | | MW77-92-10-21 | 21 | | | <0.005 | <0.005 | <0.005 | <0.005 | | ND | | | | | MW77-92-10-31 | 31 | | | <0.005 | <0.005 | | | | DA | | | | | MW77-92-10-40.3 | 40.3 | | | <0.005 | <0.005 | | <0.005 | | ND | | | | | MW77-92-10-50.5 | 50.5 | | : | <0.005 | <0.005 | <0.005 | <0.005 | | ND III | | | | | MW77-92-10-71 | 71 | | | <0.005 | <0.005 | <0.005 | <0.005 | | ND III | | | | | SB77-94-1-3.8 | 3.8 | Apr-94 | BC | 0.010 | 0.068 | 0.12 | 0.094 | | | ND | <20 | <1.0 | | SB77-94-1-9.2 | 9.2 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | ND PROFESSION | <20 | <1.0 | | SB77-94-1-13.7 | 13.7 | | : | <0.005 | <0.005 | <0.005 | <0.005 | | | Crude Oil=150 | 120 | <1.0 | | SB77-94-2-4 | 4 | | | <0.005 | <0.005 | | <0.005 | | | ND | 22 | <1.0 | # Soil Sampling Results (mg/kg) # AOC 5-4: Building 77 Sanitary Sewer System # Concentrations of Organic Constituents and Cyanide COPCs: Halogenated VOCs, PCBs, Fuel Hydrocarbons | | | | Voc | s | | BTEX | Fuel Identification | Oil &
Grease | Cyanide | |-----|-------------|---------|-----|-----|--------------------------|------|---------------------|-----------------|---------| | | cis 1,2-DCE | 1,1-DCA | PŒ | TCE | Other Compounds Detected | | | | | | PRG | 43 | 590 | 5.7 | 2.8 | | | | | | | Sample ID | Depth
(ft) | Date | Lab | | | | | | .,, | | | |-----------------|---------------|--------|-----|--|--------|------------------|----------------|--|-----|-----|-------| | SB77-94-2-8.7 | 8.7 | Apr-94 | BC | <0.005 | 0.021 | <0.005 | <0.005 | | ND | <20 | <1.0 | | SB77-94-2-13.7 | 13.7 | | | <0.005 | <0.005 | <0.005 | <0.005 | | DON | <20 | <1.0 | | SB77-94-2-18.9 | 18.9 | | | <0.005 | <0.005 | <0.005 | ₹0.005 | | ND | <20 | <1.0 | | MW77-94-5-4.3 | 4.3 | May-94 | BC | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-5-9.3 | 9.3 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-5-14.1 | 14.1 | | | | | <0.005 | | | | | | | MW77-94-5-19 | 19 | | | <0.005 | <0.005 | ₹0.005 | 0.005 | | | | | | MW77-94-5-29.5 | 29.5 | | | 集 10.005 開 相 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-5-38.9 | 38.9 | | | ₩ ₹ 0.005 | <0.005 | ₹0.005 | <0.005 | | | | | | MW77-94-5-48.5 | 48.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-5-58.5 | 58.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-6-3.7 | 3.7 | May-94 | BC | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-6-9.3 | 9.3 | | | <0.005 | | | | | | | | | MW77-94-6-14.2 | 14.2 | | | | | €0,005 | iiii.≪0.005⊯≘. | | | | | | MW77-94-6-24.2 | 24.2 | | | <0.005 | <0.005 | *** 0:005 | f⊪ <0.005 □ | | | | | | MW77-94-6-34 | 34 | | | <0.005 | <0.005 | <0.005 | fil <0.005 | | | | | | MW77-94-6-44 | 44 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-6-54.5 | 54.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-94-6-63.5 | 63.5 | | | <0.005 | <0.005 | <0.005 | <0.005 | | | | | | MW77-97-10-4.3 | 4,3 | May-97 | BC | <0.005 | | | | | | | | | MW77-97-10-14.2 | 14.2 | | | <0.005 | | <0.005 | <0.005 | | | | | | MW77-97-10-24.5 | 24.5 | | | | | <0.005 | | | | | - *** | | MW77-97-10-33.5 | 33.5 | | | # <0.005 #### | <0.005 | <0.005 | <0.005 | | | | | | MW77-97-10-45 | 45 | | | | €0.005 | <0.005 | ₹0.005 | | | | | = Not analyzed = Not detected above reporting limit (reporting limit shown) = Not detected above reporting limit (reporting limit varies with analyte) BC = Analysis by BC Laboratories C = Analysis by Chromalab Q = Analysis by Quanteq Laboratories MT = Analysis by MedTox Associates PRGs for Residential Soil for Detected Organic Analytes (mg/kg) Chloroform≃0.24 VOCs analyzed by EPA Method 8010, 8240, or 8260 BTEX analyzed by EPA Method 8020 Oil & Grease analyzed by EPA Method 413.1 Cyanide analyzed by EPA Method 9012 Fuel Identification analyzed by EPA Method 8015M included: Light Naptha, Aviation Fuel, Stoddard/White Spirits, Heavy Naptha/Ligroin/Petroleum Benzine, Gasoline, JP4, JP5, JP6, JP8, Kerosene/Jet Fuel, Diesel, Crude/Waste Oil, Hydraulic Oil, and WD-40 RFA = RCRA Facility Assessment COPCs = Chemicals of Potential Concern # Table C3.6-1 Soil Sampling Results (mg/kg) Chicken Creek Former Poultry Research Station Concentrations of Organic Constituents 01/00- | | · | | | | SVOCs | Pestic | ides and PCBs | |--------------|--------------------|---------------|--------|-----|-------|---------|---------------| | | | | | | | 4,4-DDE | 4,4-DDT | | | | | | PRG | | 1.7 | 1.7 | | Location | Sample ID | Depth
(ft) | Date | Lab | | | | | Poultry | SS-CKPit-97-1A-2.5 | 2.5 | Feb-97 | BC | ND | 0.0003 | 0.0006 | | Research Pit | SS-CKPit-97-2A-2.5 | 2.5 | | | ND | 0.0003 | 0.0003 | | | SS-CKPit-97-3A-2 | 2 | | | ND | 0.0006 | 0.0010 | | | SS-CKPit-97-4A-2 | 2 | | | ND | <0.0002 | <0.0002 | | | SS-CKPit-97-5A-5 | 5 | | | ND | <0.0002 | <0.0002 | | | SS-CKPit-97-6A-5 | 5 | | | ND | <0.0002 | <0.0002 | | | SS-CKPit-97-7A-5 | 5 | | | ND | <0.0002 | <0.0002 | | | SS-CKPit-97-8A-4.5 | 4.5 | | | ND | <0.0002 | <0.0002 | | | SS-CKPit-97-9A-5 | 5 | | | ND | <0.0002 | <0.0002 | < ND BC = Analysis by BC Laboratories SVOCs analyzed by EPA Method 8270 Pesticides and PCBs analyzed by EPA Method 8080 ⁼ Not detected above reporting limit (reporting limit shown) ⁼ Not detected above reporting limit (reporting limit varies with analyte) # Table C3.7-1 Soil Sampling Results (mg/kg) Grizzly Electrical Substation Concentrations of Organic Constituents | | | | | | BTEX | PCBs | TPH-Fuel Identification | PAH | |------------|-----------------|---------------|--------|-----|------|--------------|-------------------------|-----| | | | | | | |
Aroclor 1260 | | | | | | | | PRG | | 0.22 | | | | Location | Sample ID | Depth
(ft) | Date | Lab | | | | | | Grizzly | SS-GS-98-1-1.75 | 1.75 | Jun-98 | BC | | <0.01 | | | | Substation | SS-GS-98-2A-0.5 | 0.5 | | | | <0.01 | | | | | SS-GS-98-2B-0.5 | 0.5 | | | | <0.01 | | | | | SS-GS-98-2C-2 | 2 | | | | <0.01 | | | | | SS-GS-98-2D-3.5 | 3.5 | | | | <0.01 | | | | | SS-GS-98-3-1.2 | 1.2 | | i [| | <0.01 | | | | | SS-GS-98-4-1.8 | 1.8 | | | | < 0.01 | | | | | SS-GS-98-5-0.8 | 0.8 | | | | < 0.01 | | | | | SS-GS-98-6-0.75 | 0.75 | | | | < 0.01 | | | | | SS-GS-98-7-0.7 | 0.7 | | | | < 0.01 | | | | | SS-GS-98-8-0.7 | 0.7 | | | | <0.01 | | | | | SS-GS-98-9-0.8 | 0.8 | | | | < 0.01 | | | | | SS-GS-98-10-1.6 | 1.6 | | i [| | <0.01 | | | | | SS-GS-98-11-1.6 | 1.6 | | | | <0.01 | | | | | SS-GS-98-12-1.5 | 1.5 | | | | < 0.01 | | | | | SS-GS-98-13-1.5 | 1.5 | | | | <0.01 | | | | | SS-GS-98-14-0.7 | 0.7 | | | | <0.01 | | | | | SS-GS-98-15-0.9 | 0.9 | | | | <0.01 | | | | | SS-GS-98-16-0.7 | 0.7 | | | | 0.017 | | | | | SS-GS-98-17-1.5 | 1.5 | | | | <0.01 | | | | | SS-GS-98-18-1.4 | 1.4 | | | - | <0.01 | | | | | SS-GS-98-18-1.9 | 1.9 | | | ND | | | nD. | | | SS-GS-98-19-0.9 | 0.9 | | [| | 0.018 | | | # Table C3.7-1 Soil Sampling Results (mg/kg) Grizzly Electrical Substation Concentrations of Organic Constituents | | | | | | BTEX | PCBs | TPH-Fuel Identification | PAH | |-----------------------|-----------------|---------------|--------|-----|------|--------------|---------------------------------------|-----| | | | | | | | Aroclor 1260 | | | | | | | | PRG | | 0.22 | | | | Location | Sample ID | Depth
(ft) | Date | Lab | | | | | | Grizzly
Substation | SS-GS-98-19-1.4 | 1.4 | Jun-98 | BC | ND | | Diesel=190
Hydraulic/Motor Oil=130 | ND | | | SS-GS-98-20-1.3 | 1.3 | | r | ND | | | ND | | | SS-GS-98-21-1 | 1 | | | | | Diesel=20
Crude/Waste Oil=57 | | | | SS-GS-98-22-1.4 | 1.4 | | | | | Hydraulic/Motor Oil=52 | | | | SS-GS-98-23-0.9 | 0.9 | | | | | ND | | | | SS-GS-98-24-1 | 1 | | | | <0.01 | Hydraulic/Motor Oil=66 | ND | < ND = Not detected above reporting limit (reporting limit shown) = Not detected above reporting limit (reporting limit varies with analyte) = Not analyzed BC = Analysis by BC Laboratories BTEX analyzed by EPA Method 8020 PCBs analyzed by EPA Method 8080 Fuel Identification analyzed by EPA Method 8015M, Included: Light Naptha, Aviation Fuel, Stoddard/White Spirits, Heavy Naptha/Ligroin/Petroleum Benzin, Gasoline, JP4, JP5, JP8, Kerosene/Jet Fuel, Diesel, Crude/Waste Oil, Hydraulic/Motor Oil, and WD-40 PAHs analyzed by EPA Method 8310 Table C3.8-1 Other Soil Sampling Results (mg/kg) Concentrations of Organic Constituents and Cyanide | | | | | | VOCs | Cyanide | |--------------|--------------------|---------------|--------|-----|--|---------| | | | | | PRG | cis-1,2-DCE=43
PCE=5.7 | 11 | | Location | Sample ID | Depth
(ft) | Date | Lab | | | | Building 69A | BS-SB69A-99-1-3 | 3 | Oct-99 | ВС | ND 4 COLUMN | | | | BS-SB69A-99-1-5.5 | 5.5 | | | ND | | | | BS-SB69A-99-1-10.3 | 10.3 | | | ND | | | | BS-SB69A-99-1-14.2 | 14.2 | | | ND | | | | BS-SB69A-99-1-19.3 | 19.3 | | | NO STATE OF THE PROPERTY TH | | | | BS-SB69A-99-1-23.8 | 23.8 | | | ND 45 | | | | BS-SB69A-99-1-29.3 | 29.3 | | | cis-1,2-DCE=0.0083 | | | | BS-SB69A-99-1-34.1 | 34.1 | | | cis-1,2-DCE=0.0059 | | | Building 77 | SS-77-99-1-1.7 | 1.7 | Dec-99 | ВС | ND | | | | SS-77-99-3-1.7 | 1.7 | | | ND | | | | SS-77-99-4-1.6 | 1.6 | | | ND | | | | SS-77-99-5-1.7 | 1.7 | | | ND | | | | SS-77-00-2-1.4 | 1.4 | Apr-00 | ВС | ND | <0.5 | | | SS-77-00-3-1.5 | 1.5 | | | PCE=0.012 | <0.5 | | | SS-77-00-4-1.5 | 1.5 | | | ND | <0.5 | | | SS-77-00-5-1.3 | 1.3 | | ; | PCE=0.0091 | <0.5 | | | SS-77-00-6-1.5 | 1.5 | | | PCE=0.042 | <0.5 | | | SS-77-00-7-1.8 | 1.8 | | | PCE=0.023 | | | | SS-77-00-8-1.8 | 1.8 | | | ND | | | | SS-77-00-9-1.9 | 1.9 | | | ND | | # Table C3.8-1 Other Soil Sampling Results (mg/kg) Concentrations of Organic Constituents and Cyanide | | | | | | VOCs | Cyanide | |-------------|----------------------|---------------|--------|-----|---------------------------|---------| | | | | | PRG | cis-1,2-DCE=43
PCE=5.7 | 11 | | Location | Sample ID | Depth
(ft) | Date | Lab | | | | Building 77 | SS-77-00-11-1.4 | 1.4 | Apr-00 | BC | ND | <0.5 | | | SS-77-00-10-1.5 | 1.5 | | | p-isopropyltoluene=0.0056 | | | SB31-97-1 | BS-SB31-97-1-RecompA | | Sep-97 | BC | ND | | | SB31-97-2 | BS-SB31-97-2-RecompA | | | | ND | | | SB31-97-3 | BS-SB31-97-3-RecompA | | | | ND | | | | = | Not | analyzed | | | | | | | | |----|---|-----|----------|-------|-----------|-------|------------|-------|---------------|----------| | | = | Not | detected | above | reporting | limit | (reporting | limit | shown) | | | ND | = | Not | detected | above | reporting | limit | (reporting | limit | varies with a | ınalyte) | BC = Analysis by BC Laboratories VOCs analyzed by EPA Method 8260 Cyanide analyzed by EPA Method 9012 Table C4.3-1 LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in μg/L) | | | MW91-1 (w | ell is on a | nnual samp | ling) | | | | | | | | | | | |----------------------------|---------|------------|-----------------------|-------------------------|--------------------------|------------------------|--|-------------|---------|-----------------|---------------------------|-------------------------|--------------------|----------|--------| | Constituent | MCL | Nov-92 | Mar-93 | May-93 | Aug-93 | Nov-93 | Mar-94 | Aug-94 | Feb-95* | Sep-95 | Mar-96 | Mar-97 | ป นก-97 | May-98* | May-99 | | Aromatic and Non-Halo | genate | d Hydrocar | bons | | | | | | | | | | | | | | Benzene | 1 | <5 | 200 < 1 200 | | <1 | (C) (< 16.00) | <1 | | <0.5 | <1 | - <1 | <1 | 44 41 4 ab | <0.5 | 144<14 | | n-Butylbenzene | | <5 | <1 | <1 | <1 | 121 | 5 % < 1 5 % | <1 | < 0.5 | <1 | <2 | <1 | 70 - (1 0 - | <0.5 | <1 | | sec-Butylbenzene | | <5 | # 21 | 111 | 1 | 1 | 774 | ~1 ~ | <0.5 | <1 | <2 | <1 | ** < 1 · * | <0.5 | <1 | | ter-Butylbenzene | | <5 | | <1 | *** <1 | <1 | 1441 | <1 | <0.5 | <1 | <2 | <1 | <1 | <0.5 | <1. | | Ethylbenzene | 700 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | Se <1 | <2 | <1 | <1 | <0.5 | <1 | | Isopropylbenzene | | <5 | <1 | 7 | <1 | <1 | <1 | <1 | <0.5 | <1 | S<1 | <2 | <2 | <0.5 | <2 | | p-isopropyltoluene | | <5 | <1 | * | <1 | <1 | <1 | | < 0.5 | <1 | | <1 | <1 | <0.5 | <1 | | Naphthalene | | <5 | <1. | <1 | <1 | <1 | <1 | <1 | < 0.5 | <1 | ୍ ୍ 1 | <2 | <2 | <0.5 | <2 | | n-Propylbenzeлe | | <5 | <1 | \ | <1 | <1 | <1 | <1 | <0.5 | <1 | <2 | %:-<1 -00 | <1 | <0.5 | <1 | | Toluene | 150 | <5 | <1 | | 40 5 < 1 700 0 | <1 | <1 | ~ <1 | < 0.5 | <1 | 7 - <1 - 3 | ~~~ < 1 ***** | 20041 | < 0.5 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | 255 <1 25 | <1 | <1 | 274 <1 28 | <1 | <0.5 | ~1 00 | <1 | <1 | # H<1 | < 0.5 | <1 | | 1,2,4-Trimethylbenzene | | <5 | 1986 | <1 | | <1 | <1 | <1 | < 0.5 | *** | <2 | 111 (111 (1 | <1 | <0.5 | <1 | | 1,3,5-Trimethylbenzene | | <5 | ***<1 | <1 | 144-149 | <1 | 美久さ | <1 | <0.5 | <1 | <2 | <1 | - <1 11 | <0.5 | <1 | | Xylenes, total | 1750 | <5 | <1 | <1 | | <1 | <1 | <1 | ***<1 | 34 31 11 | <2 | <2 | <2 | <1 | <2 | | Total Aromatic Hydrocar | bons | | | | | | | | | | | | | | | | Halogenated Non-Aroma | atic Hy | drocarbons | 3 | | | | | | ••• | | | | • | | | | Carbon Tetrachloride | 0.5 | <5 | *** <1 | <1 | <1 | <1 | <1.0 | <1 | <0.5 | <1 | <1 | <1 | <1 | <0.5 | <1 | | Chloroform | 100 | <5 | ## <1 | 1 < 1 = 2 = 2 | ## <1 ## | <1 | | <1 | <0.5 | <1 | 33 < 1 | <1 | <1 | <0.5 | <1 | | 1,1-Dichloroethane | 5 | <5 | - K | <1 | | (<1 **** | ************************************** | <1 | <0.5 | <1 | <1 | <1 | <1 | <0.5 |
<1 | | 1,2-Dichloroethane | 0.5 | <5 | <1 | *** | martin (1) (100) | <1 | ~1 | <1 | < 0.5 | <1 | 35 < 1 | <2 | <2 | <0.5 | <2 | | 1,1-Dichloroethene | 6 | <5 | <1 | < 12.2 | | 1 | 2 1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <0.5 | <1 | | cis-1,2-Dichloroethene | 6 | <5 | 1 | <1 | | <1 | <1 | <1 | <0.5 | <1 | ং । | < | <13 | <0.5 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | <1 | <1 | 1.64 | | ~1 | <1 | < 0.5 | <1 | <1 | <1::- | < 1 5 | <0.5 | <1 | | Methylene Chloride | 5 | <5 | . <1 | <10.5 | | ×1- | * 1 | <1 | <1 | ~1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | <1 | - (1 55) | ### <1 500 | 100 < 1 0.00 | | <1 | <0.5 | <1 | <1 | <10.5 | - <15-1 | <0.5 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | 9 1 1 | <1 | 900641 | <1 | 54 24 1 4 5 5 | <1 | <0.5 | <1 | :: <1 ::::::::: | 3/4 <1 %3 | <1 | <0.5 | <1 | | 1,1,2-Trichloroethane | 5 | ′ <5 | | :: <1 :::5 | | <10 | 9721 | | < 0.5 | | < 1 | 55 <1 *** | <10 | <0.5 | ***<1 | | Trichloroethene | 5 | <5 | 6/4<1 € | <1 | | <1 | <1 | <1 | < 0.5 | <1 | | <1 | <1 | <0.5 | -:::<1 | | Freon-113 | 1200 | <0.6 | <1 | <1 | <1 | <1 | 196 | <1 | <0.5 | <5 | **** <1 **** | <1 | <1 | <0.5 | <1 | | Vinyl Chloride | 0.5 | <5 | <1::- | <1 | 1 (1 | <1 | 21 | <1 | <0.5 | <1 | ্ৰ | <1 | <1 | <0.5 | <1 | | Total Halogenated Hydrocar | bons | | | | | | | | | | | | | | | | Total Concentration of Ve | OCs | | | | | | | | | | | | |
 | | | | | | | | · | | | | l | | | | <u> </u> | <u> </u> | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit ^{* =} Analysis by BC Laboratories # Table C4.3-1 (Cont'd) # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MW91-2 | (well is | on sem | i-annual | samplin | g) | | | | | | | | | | | | | ··· | | | |----------------------------|---------|---------------|--|-----------------|----------------------|-----------------------|--|--|-------------------|----------------------|---------|-------------------|----------|--------------|--------------------|--------------------|--------------------|----------------|-------------|-------------------|--------------|--------| | Constituent | MCL | Nov-92 | Mar-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | May-94 | Sep-94 | Nov-94* | Feb-95* | Sep-95 | (D)* | Маг-96 | Aug-96 | Mar-97 | Sep-97 | Mar-98 | Sep-98 | Маг-99 | Sep-99 | Mar-00 | | Aromatic and Non-Halog | genate | d Hydro | carbons | | | | | | | | | | | | | | | | | | | | | Benzene | 1 | <5 | <1 | ## *1 # | | | 100 | ## 2 | टाड | <0.5 | <0.5 | 10 ~1 0 m | <0.5 | 9-<1 | <1 | <1 | <1 | ** <15× | <1 | <1 | ~ 1 | <1 | | n-Butylbenzene | | < 5 | € < 1 | 1 | <1 | 98 41 18 | 1 21 | * | ## < 1 | <0.5 | <0.5 | | <0.5 | <2 | W<17 | / *1 | <1 | <1 | < 10 | <1 | <1 | <1 | | sec-Butylbenzene | | <5 | ************************************** | 44<14 | <1 | | <1 | *** | <1 | <0.5 | <0.5 | * | <0.5 | <2 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | ## <1## | | <1 | | 11741 | 阿米 打造 | 11 | <0.5 | <0.5 | V | <0.5 | <2 | ~1 | <1 | 5.₹1 | <1 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <5 | 11 | 41 | 128 | #21# | ## 21 ## | *** | # 61 | <0.5 | <0.5 | <1 | <0.5 | **<2 | # < 1 # | - - 1 | <1- | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | ₹5 | <1. | | <1 | 241 | <1 | 100 | <1 | <0.5 | <0.5 | | <0.5 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | <1 | 114 | <1 | ~1 | **<1 | *** ********************************* | <1 | <0.5 | <0.5 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Naphthalene | | <5 | 11 <131 | <1 | <1 | <1 | <1 | 41 % | <1 | <0.5 | <0.5 | ∴<1 | <0.5 | <1 | <2 | <2 | · <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | 1 | <1 | <1 | <1 | <1 | 10<1 | | <0.5 | <0.5 | <1 | <0.5 | <2 | <1. | <1 | <1: | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | -<1 | <1 | <1 | <1 | < 1 | <1 | 据 <1 册 | <0.5 | <0.5 | # <1 | <0.5 | - <1 | <1 | <1 | <1 | <1 | <1 | ~:1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | <1 | <1 | <1 | <1 | <1 :: | iii.<1 | <0.5 | <0.5 | 5. <1 5 | <0.5 | <1 | : <1 · | 65 <1 00 | <1 | # < 1 × | e2< 14.4 | 15 <1 0 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5% | <1 | <1 | 155 < 1 55 | H <1 | € (1 %) | # <1 | # <1 #L | <0.5 | <0.5 | <14 | <0.5 | <2 | <1.0 | <1= | 20 < 1 0 | <1 | <1 | ~1 | <1 | <1 | | 1,3,5-Trimethylbenzeле | | 14459 | : 1 686 | # :<1 | # < 1 /s | <1 | ○ <100 | #<1 # | <1.0 | <0.5 | <0.5 | ₹1 % | <0.5 | <2 | ·· <1 | % <1 % | <1 | <1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | 1 | # 21 | <1 | 99 <1 5. | ** <1 *** | <1 | <1 | \$ 1 | <1 " | 5/41/8 | :: <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarl | bons | Halogenated Non-Aroma | atic Hy | drocarb | ons | Carbon Tetrachloride | 0.5 | <5 | <1 | <1 | <1 | <1 | ************************************** | <1 | 8/4184 | <0.5 | <0.5 | 27 21 00 | <0.5 | <1 | 3 < 1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <10 | * | <1 | <1 | <1 | 1 | #R1# | <0.5 | <0.5 | # < 1 @ ! | <0.5 | <1 | <1 | ~1 | <.1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | 10.0 | 3.7 | 6.1 | 3.2 | 5.7 | 2.6 | 3.8 | 1.1 | 3.1 | 3.1 | 2.5 | 2.5 | 3.9 | 2.0 | 2.4 | 1.6 | 2.5 | 1.3 | 1.5 | 1.7 | 1.9 | | 1,2-Dichloroethane | 0.5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | 41.5 | <0.5 | <0.5 | <1 | <0.5 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1.1-Dichloroethene | 6 | 15.1 | 4.5 | 6.0 | 5.3 | 5.6 | 4.6 | 5.0 | 1.6 | 3.5 | 3.7 | 4.3 | 3.2 | 4.6 | 1.8 | 2.9 | 1.5 | 3.6 | 1.3 | 1.6 | 1.4 | 1.9 | | cis-1,2-Dichloroethene | 6 | 18.8 | 19.2 | 23.3 | 18.4 | 20.9 | 16.7 | 21.5 | 9,8 | 14.0 | 14.0 | 15.7 | 11.0 | 18.9 | 9.7 | 11.2 | 8.2 | 15.1 | 7.3 | 9.4 | 6.9 | 8.7 | | trans-1,2-Dichloroethene | 10 | 16.8 | 8.6 | 9.0 | 5.4 | 6.1 | 7.5 | 5.1 | 3.7 | 3.5 | 4.2 | 7.2 | 4.8 | 7.1 | 1.8 | 2.2 | 2.0 | 4.9 | 1.3 | 1.8 | 1.8 | 2.3 | | Methylene Chloride | 5 | <5 | 928 < 1 859 | <1: | -1 | 1881 > 1881 | 111 | - (<1 /4 | ***<135 | 48# <1 000 | 224 | - Y | 1 | 1.41 | 66 <1 26 | <10 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | \$6 <1 56 | <1:0 | <1 | | 1 < 1 | <1 | 6<16 | <0.5 | <0.5 | 2 < 12 | <0.5 | 6.5 | W-<1 11 | 202100 | <1 | 56 41 5 | <1 | <1 | <1 | 1.0 | | 1,1,1-Trichloroethane | 200 | <5 | <1 | <1 | <1 | | <1 | 15<1 | ٧ | ₹0.5 | <0.5 | ~1 | <0.5 | | ~1 | # ₹1 | ″ <1° | <1 | <1 | <1 | <1 | 2.6 | | 1,1,2-Trichloroethane | 5 | # <5 | <1 | 1112 | <1 | | <1 | #1 21 | 2 <1 | <0.5 | <0.5 | - <1 | <0.5 | | | 2 <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Trichloroethene | 5 | <5 | <1 | 112 | 111 | 200 < 1 200 | ~1 | 14 4 1 1 | <1 | <0.5 | <0.5 | <1 | <0.5 | 2.6 | <1 | ं दा | <1 | 27 < 1 | 1 21 | 93 21 69 | <1 | <1 | | Freon-113 | 1200 | <0.6 | 1112 | 44 | <1 | | 1112 | 44 | | ₹0.5 | <0.5 | <5 | <0.5 | < t : | <1 | <1 | 21<12 | 241 | <1 | <1 | 341 5 | <1 | | Vinyl Chloride | 0.5 | <5 | 107/1/1 | | <1 | | <1 | <1 | <1 | <0.5 | <0.5 | 1 < 1 | <0.5 | <1 | <1 | ंदा | / <1: | <1 | <1 | <1 | <1 | <1. | | Total Halogenated Hydrocar | bons | 60.7 | 36.0 | 44.4 | 32.3 | 38.3 | 31.4 | 35.4 | 16.2 | 24.1 | 25.0 | 29.7 | 21.5 | 43.6 | 15.3 | 18.7 | 13.3 | 26.1 | 11.2 | 14.3 | 11.8 | 18.4 | | Total Concentration of Vo | OCs | 60.7 | 36.0 | 44.4 | 32.3 | 38.3 | 31.4 | 35.4 | 16.2 | 24.1 | 25.0 | 29.7 | 21.5 | 43.6 | 15.3 | 18.7 | 13.3 | 26.1 | 11.2 | 14.3 | 11.8 | 18.4 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit Harris Commence * = Analysis by BC Laboratories (D) = Duplicate sample # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results # Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MW91-3 (| well is on | annual s | ampling) | | | | | | | | | | | | | | |----------------------------|---------|------------------|-------------------|----------------------|--|-----------------------|----------------------|---------|----------|---------|---------|--|------------------------|----------------------|---------------------|--------------------|-------------------|--------| | Constituent | MCL | Nov-92 | Mar-93 | May-93 | Aug-93 | Nov-93 | Mar-94 | May 94* | Aug-94 | Nov-94* | Feb-95* | Aug-95 | Feb-96 | Jul-96 | Feb-97 | Aug-97 | Aug-98 | Aug-99 | | Aromatic and Non-Haloger | nated H | ydrocarbo | ons | | | | | | | | | | | | | | | | | Benzene | 1 | <5 | <1.4 | <1 | | -,×-<-1(* i.÷ | 90. <1 505 | <0.5 | .5 <1 | <0.5 | <0.5 | ং | 25 < 15.0 | <1 | ∂<1 | <1.2 | 1141 | ··· <1 | | n-Butylbenzene | | <5 | <1 | \$ <1 | <1 | 64 < 1 6.69 | ¥ *** | <0.5 | <1 | <0.5 | <0.5 | 767 < 1 | <2 | <2 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | *** <5 | <1 | ***<1 **** | <1 | 2121 | ~ 1 | <0.5 | <1 | <0.5 | < 0.5 | | <2 | <2 | 13 <15 | <1 | <1 | <1 | | ter-Butylbenzene | | 45 | | 212 | # 12 11 TE |
<1 | <1 | <0.5 | <1 | <0.5 | <0.5 | | <2 | <2 | 24 K1 %* | <1 | <1 | <1 | | Ethylbenzene | 700 | < 5 | | 115 | <1 | ~1 | 7 | <0.5 | <1 | <0.5 | <0.5 | <1 | <2 | <2 | #s<1 % | <1 | <1 | <1 | | Isopropylbenzene | | <5 | <1 | | <1 | <1 | 7 | <0.5 | <1 | <0.5 | <0.5 | <1 | <10 | <1 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | <1 | <1 | <1 | <1 | 7 | <0.5 | <1 | <0.5 | <0.5 | <1 | 141 | <1 | <1 | <1 | <1 | : <1 | | Naphthalene | | <5 | <1 | <1 | *** <1 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | <1 | <1 | <1 | <1 | \1 | <0.5 | <1 | <0.5 | <0.5 | <100 | <2 | <2 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | <1 | <1 | s > < 1 | / < 1 | V 1 | <0.5 | <1 | <0.5 | <0.5 | ************************************** | <1 | in <1 | <1 | <1 | ::-<1: | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | ## <1 | <1 | 35 < 1 5 % | <1: | <0.5 | <1 | <0.5 | <0.5 | <188 | ~16 0 | <1 | <1 | <1 | <10 | <1 | | 1,2,4-Trimethylbenzene | | <5 | 21 < 1 · | ## <1 E.8 | <1 | <1 | <1 | <0.5 | < 1 | <0.5 | <0.5 | (F-<150) | <2 | <2 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | <1 | - 15 m | | ## < 1 | <1 | <0.5 | <1 | <0.5 | < 0.5 | <1 | <2 | <2 | | 8 <1 1 | <1 | <1 | | Xylenes, total | 1750 | <5 | 41 10 | <1 | <1 | <1 | 457 5 78 | <1.0 | ~ <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ns | | | | | | | | | | | | | | | - | | | | Halogenated Non-Aromatic | c Hydro | carbons | | | | | | | | | | | | | | • | - | | | Carbon Tetrachloride | 0.5 | <5 | 3.47<1 | <1 | ## <1 | ~ < 1 | 5 < 1 | <0.5 | <10 | <0.5 | <0.5 | <1 | @<10 | 3ec<1 ∂a | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | | | | 500 2 1 | | <0.5 | <1 | <0.5 | <0.5 | <1 | 35 < 1 35 | 20 < 1 = 2 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | - | | 634 <1 28 | | ****** | <1/2 | <0.5 | <1 | <0.5 | <0.5 | 35/21/49 | 127<120 | <1 | 212 | * <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | 25 | 1 | | # * # # # # # # # # # # # # # # # # # # # | ***** | C12 - | <0.5 | <1 | < 0.5 | <0.5 | % 18 18 18 18 18 18 18 18 18 18 18 18 18 18 | 33 < 1 3 3 | -0<1 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | ## ** 1 | <1 | 112 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1.4 | <1 | <1 | <1 | | cls-1,2-Dichloroethene | 6 | <5 | <1 | 1.0 | 2.9 | <1 | (1) < 100 P | 0.51 | 1.3 | 0.55 | 0.61 | | 03 < 1 % | <1 | <1 | 44 < 1 d | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | (4) | <1 | <1 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 :3 | <1 | <1 | assa < 1 | <1.00 € | <1 | | Methylene Chloride | 5 | √ 5 | <1 | <1.2 | < 1 | < 1 | | <0.5 | <1 | <1_ | <1 | # <1 | 169° < 1 666 | √ (< 1 = 3 | 55 < 1 55 | <1:: | <188 | <1 | | Tetrachloroethene | 5 | < 5 | har cil eu | ## <1 ## | 44.t<1 | 2< | 15 < 1 5 0 | <0.5 | <1 | <0.5 | <0.5 | # <1 · · | 135<1-57 | 166 <1 -66 | <10 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | #<5## | in <1 | ## * 1-## | <1 | < 1 | 24 4 1 2 2 | <0.5 | <105 | <0.5 | <0.5 | # <1 · | 66 < 1 = 8 | 14 < 144 | 9 < 199 | <1 | 0/41 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | | 2 1 2 | <1 | <1 | | < 0.5 | <1 | <0.5 | < 0.5 | <1 | hell <1246 | 58 41 5 | e-14 | 21 | <1 | <1 | | Trichloroethene | 5 | <5 | <1 | 1 | 1 | ## < ### | # 21 | <0.5 | (1) <1 P | < 0.5 | <0.5 | 雪22199 | - KI | ## ** | <11 | | 550 2 1555 | <1 | | Freon-113 | 1200 | <0.6 | <1 | ~1 | ************************************** | 21 | | <0.5 | <1 | <0.5 | <0.5 | <5 | <15 | - - 1 | <12 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <5 | 1 | <1 | #12 1 | | <1 | <0.5 | <12 | <0.5 | <0.5 | <1 | <1 | 4264 | <1 | 1 4 | <1 | <1 | | Total Halogenated Hydroca | rbons | | | 1.0 | 2.9 | | | 0.51 | 1.3 | 0.55 | 0.61 | | | | | | | | | Total Concentration of VOC | cs | | | 1.0 | 2.9 | | | 0.51 | 1.3 | 0.55 | 0.61 | | | | | | 1 | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | | | | | annual |---------------------------|--------|--------|--------|-------------------|-----------------|------------------|------------------|---------------|---------------|---------------|---------------|---------------|---------|------------------|---------|------|------------------|----------------|----------|---------|--------|------------|-------------------|---------|----------|------------|----------|------------|------------------|--|-----------------| | Constituent | MCL | Oct-92 | Dec-92 | Mar-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | May-94 | Aนฏ-94 | Dec-94* | Feb-95 | May-95* | Sep-95 | Dec-95† | (D). | Mar-96 | Jun-96 | Aug-96 | Dac-95* | Mar-97 | Jun-97 | Sep.97 | Dec-97* | Mar-98 | Jun-98 | Seq-98 | Nov-BR | Feb-99 | pe-nul. | Mar-00 | | Aromatic and Non-Hal | | | | | | | | | | | | | | | | | | | <u> </u> | A | | | | | | , | | | , 50 55 | 5411 551 | | | Benzene | 1 | 25.6 | 22.3 | 6.7 | 3.6 | 52.9 | 12.9 | \$ <1. | 10.4 | 28.0 | 16.0 | 24.0 | 8.7 | 4.7 | 76.0 | 52.0 | 4.5 | 98.3 | 57.4 | 5.6 | 34.3 | 11.1 | 47.7 | 12.0 | 32.2 | 31.4 | 31.6 | 43.5 | 36.2 | 23.9 | 10.5 | | n-Butylbenzene | | <5 | <5 | <1 | <1 | 4<1 5 | <1 | <10 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <2 | <2 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | <5∶ | <5 | <1 | <1 | <1 | < 1 | <1 | ंदा | 14 | <0.5 | <0.5 | < 0.5 | <1 | <5 | <3 | <2 | <2 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | <5 | ं < 1 ं | <1 | <1 | <1 | <1 | <1% | <1 | <0.5 | <0.5 | <0.5 | a < 1 | <5 | <3 | <2 | ·<2 | <1 | <0.5 | <1 | <1. | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | < 5 | <5 | <1 | 4<1 0 | <1 | <10 | <1 | <18 | < 1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <2 | <2 | <1 | <0.5 | <1 | <1 | o < 1 . | <0.5 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | <5 | <5 | <1 | <1 | <1: | <1 | <1 | <1 | | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <1 | ∞<1 ं | <2 | <0.5 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <u>~2</u> | | p-Isopropyitoluene | | <5 | <5 | <1 | < 1 | <1 | 3<1 | <1 | <1 | <1- | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Naphthalene | | <5 | <5 | <1 | <1 | <1 | <1 | ~<1 | a ₹1 8 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | ∄<1- | <1 | <2 | <0.5 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <u>~2</u> | <2 | | n-Propylbenzene | | <5 | <5 | S<10 | \$ 21 % | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | | <2 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <u> </u> | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | <5 | <1 | T<1 | 8 < 10 | <1 | <1 | <1 | 1.1 | < 0.5 | <0.5 | <0.5 | 218 | <5 | <3 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | < | <1 | <u> </u> | <1 | <1 | ~1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <5 | <1 | <1: | <1 | *<1 5 | # 21 # | €1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | (31) | <1 | <1 | <0.5 | <1 | <1 | < 1. | <0.5 | <1 | <1 | · <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | <5″ | <1 | <1 | ्रा | % <1 € | 10 | <1 | <1 | <0.5 | <0.5 | <0.5 | ंदाः | <5 | <3 | <2 | <2 | <1 | <0.5 | <1 | <1 | < 1 | <0.5 | <u> </u> | < 1 | <1 | ~ <u>`</u> | <1 | <1 | - 21 | | 1,3,5-Trimethylbenzene | | <5 | <5 | <1 | ## 17 P | î < 1 | <1 | <1 | # 61 8 | <12 | <0.5 | <0.5 | <0.5 | 7 E | <5 | <3 | <2 | <2 | <1 | <0.5 | <1 | <1 | <u>را</u> | <0.5 | < 1 | <1 | <1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | ₹5 | <5 | <1 | <1 | # 41 | <1 | H-216 | <1 | <11 | # 21 1 | 221E | <1 | 3 <1 2 | <10 | <6 | <2 | <2 | <2 | <1 | <2 | <2 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocart | bons | 25.6 | 22.3 | 6.7 | 3.6 | 52.9 | 12.9 | | 10.4 | 29.1 | 16.0 | 24.0 | 8.7 | 4.7 | 76.0 | | | | 57.4 | | 34.3 | | | 12.0 | | | 31.6 | 43.5 | | 23.9 | 10.5 | | Halogenated Non-Aro | matic | Hvdro | carbon | ıs | | | | | | | | | | | | 02.0 | 7.0 | 50.0 | 1 37.4 | , 5.6 | 04.0 | 11.1 | 41.1 | 12.0 | 32.2 | 131.4 | 31.0 | 43.5 | 30.2 | 23.9 | IU.5 | | Carbon Tetrachloride | 0.5 | < 5 | <5 | <1 | # ~ 10 | <1 | <1 | <1 | <1 | <1 | < 0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <1 | ج1. | <1 | <0.5 | <1 | <1 | < 1 | <0.5 | <1 | <1 | <1 | <1 | <1 | 1 | <1 | | Chloroform | 100 | < 5 | 5.4 | 2.2 | <1 | ∉ <18 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | 5 c 1 | <1 | < | <0.5 | <1 | ~ 1 | < 1 | <0.5 | <1 | <1 | <1 | < | <1 | <1 | <u><1</u> | | 1,1-Dichloroethane | 5 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | < i | <1 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | _ <u> </u> | <1 | <1 | | | 1,2-Dichloroethane | 0.5 | <5 | <5 | 1210 | 1211 | #21 | <1 | (T) | 16 | 27 T | <0.5 | <0.5 | <0.5 | ≥1 | <5 | <3 | <1 | ` c l : | <2 | <0.5 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <1
<2 | | 1,1-Dichloroethene | 6 | <5 | <5 | <1 | *<1 | 2618 | 2 < 1 | 1 | @ 21 8 | <1 | <0.5 | <0.5 | <0.5 | 2 1 2 | <5 | <3 | i e i | <u>- ۲۱</u> | <1 | <0.5 | <1 | <1 | · < 1: | < 0.5 | < 1 | < 1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <5 | <5 | <1 | <1 | <1 | <1 | ≈
<1 | #218 | <1 | < 0.5 | <0.5 | <0.5 | <1 | <5 | <3 | ~1 | < 12 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | < | · < 1 | <1 | <1 | <1 | <1 | _ | | trans-1,2-Dichloroethens | 10 | ₹5 | <5 | <1 | <1 | <1 | <1 | 21 | <1 | ~1 0 | <0.5 | <0.5 | <0.5 | 1 <1 | <5 | <3 | 31 | 21 | <1 | <0.5 | ~1 | <1 | <1 | <0.5 | < I | <1 | <1 | <u></u> | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | <5 | <1 | <1 | <1 | <1 | €1 | <1 | <1 | <1 | # ~1 % | 1 | <1 | <20 | < 6 | ેર 1∄ | 21 | ~ i | <1 | <1 | <1 | <u> </u> | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | <u> </u> | | Tetrachloroethene | 5 | <5 | <5 | <1 | <1 | <1 | 8.2 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | 2219 | <5 | <3 | 1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | | <1 | <1 | <1 | <1 | <1 | | | 1,1,1-Trichloroethane | 200 | <5 | < 5 | <1 | <1 | <1 | <1 | 12.1 % | %€1 | ୍ଦ୍ରୀ | <0.5 | < 0.5 | <0.5 | <1 | <5 | <3 | د1 | c1 | - E1 | <0.5 | <1 | < 1 | <1 | <0.5 | | <u> </u> | <1 | <1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <5 | <1 | <1 | <1 | <1 | 241 | ~13° | <1 | <0.5 | <0.5 | <0.5 | <1 | <5 | <3 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | < 1 | <1 | <1 | - ₹1 | -\\ -\ | <1 | | Trichloroethene | 5 | <5 | <5 | <1 | 1.0 | 1.0 | 1.3 | Fe 15 | 121 | <1 | 0.52 | 0.61 | <0.5 | ~ 1 | <5 | < 3 | - 1 | <1 | <15 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | $\overline{}$ | | Freon-113 | 1200 | 1.2 | <0.6 | <1 | <1 | %<1 % | <1 | #21° | 210 | <1 | < 0.5 | <0.5 | <0.5 | 98622 | | < 3 | (10° 1 0° | 35218 | <1 | <0.5 | 9<10 | <u> </u> | 3<1 | < 0.5 | <1. | <u> </u> | <1 | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | ₹5 | <5 | <1 | <1 | <1 | <1 | <1 | 1218 | ≝ č t≅ | <0.5 | <0.5 | <0.5 | ~1 | <10 | | ₹<1 | -c1 | <1 | <0.5 | د1 | <1 | < 1 | <0.5 | <1 | ~ 1 | <1 | <1 | <1 | <1 | | | Total Halogenated Hydro | carbon | 5 | 5.4 | 2.2 | 1.0 | 1.0 | 9.5 | | | | 0.52 | 0.61 | | | | | | 1 | | | | 9.5-1.5 | - 74 · Lo | ~0.5 | | , 1 | | | - ` | - | ` | | Total Concentration of VC | OCs | 25.6 | 27.7 | 8.9 | 4.6 | 53.9 | 22.4 | | 10.4 | 29.1 | 16.52 | 24,61 | 8.7 | 4.7 | 76.0 | 52.0 | 4.5 | 98.3 | 57.4 | 5.6 | 34.3 | 11,1 | 47.7 | 12.0 | 32.2 | 31.4 | 31.6 | 43.5 | 36.2 | 23.9 | 10.5 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted Assistance and Dis. ⁼ Less than Quantitation Limit = Compound not included in analysis ^{* =} Analysis by BC Laboratories ^{† =} Analysis by AEN ⁽D) = Duplicate sample ## Table C4.3-1 (Cont'd) **LBNL Groundwater Monitoring Well Results** Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MW91-5 | (well is | on annu | al sampl | ing) | | | | | | | | | | | | | | | |----------------------------|---------|-------------|-------------------|--|--|-----------------|---------------------|---------|--------------------|---------|---------|------|-------------------------|-------------|---|------------|---------------------------------|---------------------|--------|----------| | Constituent | MCL | Nov-92 | Mar-93 | May-93 | Aug-93 | Nov-93 | Mar-94 | May 94* | Aug-94 | Nov-94* | Mar-95* | (D)† | Aug-95 | Feb-96 | Jul-96 | Dec-96 | Feb-97 | Aug-97 | Aug-98 | Sep-99 | | Aromatic and Non-Haloge | nated H | ydrocart | oons | | | | | | | | | | | | | | | | | | | Benzene | 1 | <5 | <1/ | ~1 55 | <1 | <1 | S (5 2 | <3.0 | 22/12/ | <0.5 | <0.5 | <5 | %<1 | <1 | <1 | <1 | <i>2</i> < 12 | <1 | < 1 | <1 | | n-Butylbenzene | | <5 | <1 | :c1 | <1 | 1 21 | 199 <1 14 | <3.0 | <1 | <0.5 | <0.5 | <5 | 1 < 1 | <2 | <2 | <1 | 11 | <1 | <1 | <1 | | sec-Butylbenzene | | <5 | # <1## | ************************************** | **< 1 8** | 112 | | <3.0 | | <0.5 | <0.5 | <5 | <1 | <2 | <2 | 1215 | 10 < 1 (1) | <1 | <1 | <1 | | ter-Butylbenzene | | 45 | ~ 1 | 144 | | ## 2 1## | | <3.0 | 41 | <0.5 | <0.5 | <5 | <15 | <2 | <2 | < 1 | <1.5 | * < 1 5 * | <1 | <1 | | Ethylbenzene | 700 | <5 | 1.1 | ** 1 | 7 | 9721 | | <3.0 | <1 | <0.5 | <0.5 | <5 | # ~1 | <2 | <2 | <1 | <10 | <1 | <1 | <1 | | Isopropylbenzene | | <5 | <1 | 21 | V | # 21 | | <3.0 | 35413 | <0.5 | <0.5 | <5 | <1 | <1 | //<16 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | 7 | | V | | | <3.0 | <1 | <0.5 | <0.5 | <5 | # <1 # | <1 | <1. | <1 | <1. | √<1∂ | <1 | <1 | | Naphthalene | | <5 | <1 | <1 | √ | <1 | <1 | <3.0 | <1 | <0.5 | <0.5 | <5 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | < 1 | | 4 1 | <1 | | <3.0 | <1 | <0.5 | <0.5 | <5 | | <2 | <2 | < 1 | <18.5 | S < 18.4 | < 1 | <1 | | Toluene | 150 | <5 | 1.4 | <1.5 | ~ 1 | <1 | <1 | <3.0 | :8 <1 :- | <0.5 | <0.5 | <5 | ĕa. <1 ₽ | <1 | ~11 | <17 | <1 | °<1.5 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | 363. 21 353 | V Table | 1 < 1 | <1.9 | <3.0 | # :<1 ## | <0.5 | <0.5 | <5 | ## <1 0 | <1 | :97 <1 /5 | <1 | <1 | <14 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5∷ | <1 | <1 | #*<1 | <1 | 441.5 | <3.0 | 21 < 1 | <0.5 | <0.5 | <5 | # < 1 = 1 | <2 | <2 | S < 1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | <1 | <1 | <1 | 2 216 | 4 | <3.0 | | <0.5 | <0.5 | <5 | <1 | <2 | <2 | < 1 | ¹ / ₂ <1∞ | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | 1.3 | ં'લાં ં | <1 | <1" | 40 21 14 | <6.0 | 24 | <1 | <1 | <10 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | пs | | 3.8 | | | | | | | | | | | | | | | | | | | Halogenated Non-Aromati | c Hydro | carbons | | | | | | | | | | | | | | | | | | • | | Carbon Tetrachloride | 0.5 | <5 | <1 | 886 <1 ,99 | <1 | <1 | W < 1 ** | <3.0 | 578 31 66 | <0.5 | <0.5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <1 | 1241 | 30 < 188 | <1 | <1- | <3.0 | ## * 155 | <0.5 | <0.5 | <5 | <1. | <1 | **<1 | <1 | <1 | <1/ | <1 | <1 | | 1,1-Dichloroethane | 5 | V 5 | ₹ | <1 | ************************************** | 1121 | | <3.0 | | <0.5 | <0.5 | <5 | 17 | <1 | <1 | <1 | <1 | 35 < 1 55 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | ₹5 | 212 | '<1 | \ | 21 | 11 | <3.0 | | <0.5 | <0.5 | <5 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | <1 | 1 | T | <1 | 441 | <3.0 | | <0.5 | <0.5 | <5 | ×1 | ે≲ 1 | 21 | <1: | <1 | <1: | <1 | <1 | | cis-1,2-Dichloroethene | 6 | ₹5 | 112 | 1 | ~1 | | <1 | <3.0 | 7221 | <0,5 | <0.5 | <5 | <1 | <1 | ~1 5 | <1 | <1 | <1 | <1 | < 1 | | trans-1,2-Dichloroethene | 10 | < 5 | <1 | <1 | <1 | <1 | # 31 % | <3.0 | <1 | <0.5 | <0.5 | <5 | <1 | | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | <1 | <1 | <1 | <1 | <1 | <3.0 | - K-1 | <1 | <1 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5::: | 5.4 | 1.5 | 1.3 | 1.2 | 1.7 | <3.0 | 1.4 | 1.3 | 1,1 | <5 | | <1 | 1.1 | <1 | <1. | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | 6 < 1 + | -i < 1 .55 | <1 | <1 | (E-E15-5) | <3.0 | <1 | <0.5 | <0.5 | <5 | 18 218 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | 45 5 | 10<10 | <1 | <1 | 1 ~ 1 | ## ~1 ## | <3.0 | 1121 | <0.5 | <0.5 | <5 | 12 2 10 0 | 121 | <1 | <1 | 21 | <1 | * 41 | :: <1 ·: | | Trichloroethene | 5 | <5 | 1.0 | 2021 | | #12 1 | | <3.0 | 121 | 0.52 | <0.5 | <5 | 1821 | 14210 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <1 | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | <0.6 | <1 | agus de | 1112 | * 1 × | - T | <3.0 | 121 | <0.5 | <0.5 | | < 5 | <10 | <1 | 1 41 | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | 2 5 | <1 | | <1 | <1 | *1 ** | <3.0 | nighting and | <0.5 | <0.5 | <10 | ¥ 21 | <1 | <1 | <1 | 6 1 | <10 | <1 | <1 | | Total Halogenated Hydroca | rbons | | 6.4 | 1.5 | 1.3 | 1.2 | 1.7 | | 1.4 | 1.82 | 1.1 | | An angles Tro Ass Tauge | | 1.1 | 1 | | | | | | Total Concentration of VOC | Ss | | 10.2 | 1.5 | 1.3 | 1.2 | 1.7 | | 1.4 | 1.82 | 1.1 | | 1 | | 1.1 | | İ | Ī | i – | Ì | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis ^{* =} Analysis by BC Laboratories ^{† =} Analysis by AEN (D) = Duplicate sample # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MW91-6 | (well is o | n annual | sampling |]) | | | | | | | | | | | | | | |----------------------------|----------|----------|----------------------|-------------------|---------------------|---------------|--|---------|------------|------------------|---------|----------------|--|-----------------|---------|--------|-----------|-------------|----------| | Constituent | MCL | Dec-92 | Mar-93 | May-93 | Aug-93 | Nov-93 | Mar-94 | May 94* | Aug-94 | Dec-94* | Jan-95° | Aug-95 | Feb-96 | Jul-96 | Dec-96 | Feb-97 | Aug-97 | Aug-98 | Sep-99 | | Aromatic and Non-Haloger | ated Hy | drocarbo | ns | | | | | | • | | | | | | | | | | | | Benzene | 1 | <5 | <1 | <1 | <1 | <1 | <1 | <0.5 | <1 | < 0.5 | <0.5 | <1 | <1.÷ | <1 | <1:: | < 1 | <1 | <1 | <1 | | n-Butylbenzene | | <5 | ~1 | <1 | <1 | <1 | 1 < 1 = 1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <2 | <2 | 10<100 | <1 | <1 | < 1 | <1 | | sec-Butylbenzene | | <5 | <1 | <1 | <1 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | <u> </u> | <5 | <1 | <1 | <10 | <1 | <1 | <0.5 | <1_ | <0.5 |
<0.5 | < | <2 | <2 | e/s<195 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <5 | <1 | <1 | <1 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <2 | <2 | <1 | ٧ | <1 | <1 | <1 | | Isopropylbenzene | | <5 | <1 | : <1 | | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | p-isopropyltoluene | | <5 | #5 <1 | ~~1 | # | .<1 | . <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <10 | <1 | <1 | | Naphthalene | | <5 | 1114 | \$50 <1 | ## <1 | <1 | 4 × 1 | < 0.5 | <1 | < 0.5 | <0.5 | <1 | <1 | <1 | <2 | <2 | <2 ° | <2 | <2 | | n-Propylbenzene | | <5 | <10 | - <1 | 41 | <1 | \$55 < 1 55 | < 0.5 | <1 | < 0.5 | <0.5 | <107 | <2 | <2 | <1 | <1 | <1 | 0.41 | <1 | | Toluene | 150 | <5 | <1 | <1 | <1 | 1 < 1 | <1 | <0.5 | 15 | <0.5 | < 0.5 | <1 | <1 | 3<1 3 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | <1 | 21 | 1 < 1 | ## <1 5 | <0.5 | <1 | < 0.5 | <0.5 | <1 | <15 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | 1 | <1 | | 1 | ************************************** | <0.5 | <1 | <0.5 | <0.5 | <1 | <2 | <2 | <10 | <1 | 21 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | 1541 | 1 < f | <1. | *** 1 | <1 | <0.5 | 2 <1 | <0.5 | <0.5 | <1 | <2 | <2 | <1 | < 1 | <1 | < i | <1 | | Xylenes, total | 1750 | < 5 | - 1 | <1 | # <1 | | <1 | <1.0 | <1 | <1 | - <1 · | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbor | ns | Halogenated Non-Aromatic | Hydro | carbons | | | | | | | | | | | | | | | | | | | Carbon Tetrachloride | 0.5 | <5 | 121 | <1 | | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | < t | <1 | <1 | 2014 | <1 | <1 | <1 | <1 | | Chloroform | 100 | ₹5 | | <1 | | <1 | 44 1 | <0.5 | <1 | <0.5 | <0.5 | <1 | ::<1. [™] | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | ~ 1 | <1 | | <1 | <1 | <0.5 | . <1 | < 0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | <1 | <1 | 4 1 | <1 | . <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <2 | < 2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | <1 | <1 | <1.0 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | | cis-1,2-Dichloroethene | 6 | <5 | # # < 1.55 | <1 | igi <1 5@ | <1 | 58.<1888 | <0.5 | <1 | <0.5 | <0.5 | st <19 | 75. <1 % | <1 | <1 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | < 5 | 55 <1 /5 | <1 | | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <10 | 3/2 /1 /2 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | <1 | <1 | 14 | <1 | 3 | <0.5 | <10 | 145 (1 45 | <1 | ~ ~ 1 % | ं <1 ः | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | <1 | <1 | 1.2 | <1 | <1 | <0.5 | 1,5 | <0.5 | <0.5 | <1 | · (1) | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | ंदाः | <1 | <1 | | <1 | <0.5 | 15 | <0.5 | <0.5 | <1 | *** ********************************* | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <1 | <1 | <1 | <1" | <1 | <0.5 | | <0.5 | <0.5 | 1 | ~ < 10 · | <1 | <1 | <1 | <1 | <1 | <1 | | Trichloroethene | 5 | <5 | <1 | <1 | <1 | | <1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | < 0.6 | <1 | <1 | <1 | | * <1 | <0.5 | *** | <0.5 | <0.5 | <5 | <1 | ~ 1 | <1 | <1 | <1 | < 1 | <1 | | Vinyl Chloride | 0.5 | <5 | <1 | <1 | <1: | st i | /<1 | <0.5 | <1 | <0.5 | <0.5 | <1 | <1: | <1 | <1 | <1 | <1 | < 1 | <1 | | Total Halogenated Hydroca | rbons | | | | 1.2 | | | | 1.5 | | | | | | | | | | <u> </u> | | Total Concentration of VOC | s | | | | 1.2 | | | | 1.5 | | | | | | I | | T | 1 | 1 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories #### Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MWP- | 9 (well | s on | annu | al san | ipling) | \neg | |---------------------------|--------|------------|--------------------|--------------|------------------|------------------|-----------------|-----------|-----------------|-------------------|--------|---------|-----------------|-------------------|-----------------|---------------------|-----------------|-------------------|------------------|--|-----------------|-------------------|-----------------|-----------------|------------------|--------|---------------|------------------|-------------------|----------------|------------|-------------------|-----------------|--------|--------|--------------| | Constituent | MCL. | Nov-92 | Mar-93 | (D) | May-93 | Aug-B: | Nov-8: | Mar-0 | 4 May-94 | Aug-84 | Dec-94 | Fab-85* | May 95 | Sep-95 | Nov-95 | Fab-96 | Mar-96 | Apr-96 | May-96 | i (D) | Jul-96 | Noy-96: | Dec-96 | Feb-97- | Feb-97- | Fab-97 | May-97 | Aug-97 | Nov-97 | Feb-98 | May-98 | Aug-98 | Nov-98 | Jan-99 | Apr-99 | Aug-00 | | Aromatic and Non-Halo | genat | ted Hyd | frocarb | อกร | Benzene | 1 | <53 | 87 - 1 2-0 | <1 | 5 <1 8 | ं र 1े | : K-16 | <1 | · <10 | <1 | <0.5 | <0.5 | <0.5 | 44 - 1 11 | _<1: | <1 | <1 | <1 | 3/<1/ | <1 | <15 | <1 | <1 | <1 | <1 | <1 | <1 | - - 1 5 | 2<19 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | ່<5∜ | c <1 **: | <1 | <1 | <1 | N-11 | 141 | F 4 - 1 2 | <10 | <0.5 | <0.5 | <0.5 | ∀~1 % | ₹2 | <2 | <2 | <2 | <2 | <2 | <2 | <1 | ं<1 ं | <1. | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | <.5 | Set in | <1 | <1 | <1 | <1 | · c1 | 141 | <1 | <0.5 | <0.5 | <0.5 | (< 1 € | ₹2 | 4<2 | - 42 | <2 | <2 | < 2 | <2 | <1 | <10 | " < 1 | <1 | ं<1∜ | <1 | ∴<1 ″ | <1: | 1<1 | <1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <10 | ं<1≓ | <0.5 | <0.5 | < 0.5 | ~ c.1 | <2 | <2 ∞ | <2 | <2 | <2 | <2 | <2 | % < 1 ≥ | < 1 | ं<1∷ | < | <1 | <1 | <1 | <1 | ::<1: | <1 | <1 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <5 | <1 | <1 | <1 | < 1 | <1 | <1 | اء: | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | < 2 | < 2 | <2 | <2 | <2 | # <1 9 | < 1 | <1 | <1€ | <1 | s ₹1 % | ∉<1 | <1 | <1- | <1 | <1 | د1 ا | <1 | <1 | <1 | | Isopropyibenzene | | <5 | ::e1::i | <1 | c 1 | ं<1 ∶ | ं<1 ₽ | <1 | : ii-c1: | <1 | <0.5 | <0.5 | <0.5 | © ∈1 % | F-12 | 41 | 341 | € 1 | 341 | ∵(1) | 721 | <2 | <2 | <2 | <2 | <2 | ં ∢2⊲ | ∷<2∴ | <2 | - 2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluane | | <5 | <1 | <1 | ~1 : | % ~ 1 % | <15 | <1 | <1 | 27 -2 127 | <0.5 | <0.5 | <0.5 | ~1 | ·*<1 | 8 218 | ≥<1: | 151 | <1 | <1 | ¥ | ۲ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1: | <1 | <1 | <1 | <1 | <1 | <1 | | Naphthalene | | < 5 | <1 | <1 | <16 | <1 | | <1 | ं ः दा ह | 41 € | <0.5 | <0:5 | <0.5 | ٠41 | ~c1 | <1 | \$ 41 5 | c1 | ~1 | ंद1 | ٧ | ٧2 | <2 | <2 | ₹2: | < 2 | <2∂ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | ্<1 | <1 | <1 | < 1 | <1 | <1 | <1 | <10 | <0.5 | <0.5 | <0.5 | <1 | .<2· | ິ<2 | ii <2∶ | <2 | <2 | ₹2 | Ý | <1 | <10 | ۸. | % ₹1 0 | <1 | /-<1: | <1 | <1 | ং1 | <1 | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | * ~1 * | S < 18 | ∰ €1 % | £<1°. | e i | <1 | <1 | v | <1 | <1∵ | ٠ ٧ [] | %< 1 ∞ | <1° | <10 | a(<1 | ं<1 ≅ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorabenzene | 70 | <5 | <1 | <1 | دا : | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | ~1 | ¥ | # 4 1 | F < 1 | <1 | €1 | ं | ٧ | <1 | <1" | < 1 | : < 1 | <1 | ं≺1ं | © <1 © | ે<1⊹ | <: 4 1: | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | < 5 | ∞<1 | <1 | <1/ | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | < 0.5 | ∀<1 ≅ | ₹2 | <2 | < 2 | ₹2 | <2 | -2 | <2 | ं<1 ं | <1 | ~ t = | ं देवी | <1 | <1 | ंद 🗺 | d < 1 € | ∠<1∴ | <1 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzone | | <5° | <1 | <1 | ~1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | < 0.5 | 8000180 | ¥2 | <2 | <2 | <2⊹ | <2 | 2> | <2 | <1 | <1 | `` ₹1 % | 6 ~1 (*) | <1 | ੋਵ1 | ं<1ः | < 1 | ੇਵ 1 8 | <1 | ~1° | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | े <1∷ | <1 | 2<10 | | E< 1 | ं<1 ë | <2 | ₹2 | ∴<2 : | ² < 2∶ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydroca | rbons | | | | | | l | Halogenated Non-Arom | atic H | lydroca | erbons | • | | | | | | | Carbon Tetrachloride | 0.5 | 5 5 | 4 -1 50 | <1. | <1 | <1 | < 1 | <1 | < 1 | < 1.5 | <0.5 | <0.5 | <0.5 | ≓<15 | 16 | : €18 | 3.8 | <1 | <1 | ⊬. -1 : | <10 | <1 | < 1 | < | <1 | <1 | <1 | <1: | ··<1''' | ्रा | <1 | ~ 1 1 | <1 | <1 | <1 | <1 | | Chleroform | 100 | ₹5 | ¥ | <1 | <1 | <1 | <10 | <1 | S < 13 | - t- | <0.5 | <0.5 | <0.5 | #E. (# | ≝€1 ® | 2210 | 382.1d | <1 | -c1 | -c1- | < 1 | %≥1 8 | <1 | < 1 | <1 | < | :<1: | <1 | : <16 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichlorgethane | 5 | ₹5 | ~1 | 21 | c1 | <1 | <13 | <1 | <1 | <1 ° | <0.5 | <0.5 | <0.5 | | 왕 (*) [변 | ₹1 | 41 | ~1 | H <1 1 | 37 7 1 |
21 5 | <1 | <1 | %e1 | 7 4 1% | <1 | <1 | :<1 | < 1 | <1 | <1 | ج1 | < 1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | ₹5 | -1 | c 1 | <1 | ×1 | 1212 | - Z1: | <1 | <10 | <0.5 | <0.5 | <0.5 | ₹1 # | 2 -1 | SE18 | :: €1 | ं <1' | <1 | # - 1 | ং | <2 | ેં દે2 | <2 | <2 | <2 | <2 | <2 | < 2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | < 5 | ₹1 | <1 | <1 | % 21 % | ~ć1 | <1 | <10 | <19 | < 0.5 | <0.5 | <0.5 | 16 21 111 | 5 41 5 | F219 | - < t | <1 | : ₹1: | া ব1 | ć1 | (1) | <1 | ∢ 1≚ | ○ < 1 | 7<1° | <1 | ·<1 | <1 | <1 | <u> </u> | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichtoroathana | 6 | <5 | *1 | ~1 | V | (c) | <1 | <1 | < 1 | -8 <1 E | <0.5 | < 0.5 | <0.5 | 1 2 | <1 | ~11 | 1.5 | <1 | <1 | <1 | ۷1 | <1 | <1 | <1 | <1 | <1 | 7 <10 | c1. | .c1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | ₹5 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | < 0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 a | :5<1 | ≂c1: | <1 | <1 | <1 | <1 | < 1 * | <1 | <1: | <1/ | √c1: | c1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | <10 € | ۲۱. | <1 | ∴<1∗ | - <1° | 41 | <1 | *<1 | <10 | 12-11 | 87 €.1 % | % 11 | 8 4 19 | © €1 % | # 21 10 | < 1 | <1 | 6× 1 | <1 | c l | < 1 | ×1" | <1 | <1 | . ⊂ [: | <1 | | <1 | c1 | c1 | <1 | e1 | <1 | <u> </u> | | Tetrachioroethene | 5 | ₹5 | 32 4 | <1 | <1 | <10 | 37213 | ~ < 1 | ¥21 | <1 | <0.5 | <0.5 | <0.5 | R 4 10 | 8 - 1 0 | 2.0 | 213.0 | ~<1° | <1 | ંકા | 3<1 0 | 18.0 | < 1 | 12.9 | 4.2 | <1 | <1 | c 1 | <10 | <1 | s 1 | c1 | <1 | <1 | ~ | | | 1,1,1-Trichtoroethane | 200 | ¥5 | Fe 1 | <1 | <1 | # €1 8 | <1 | 21 | 741 | 21 | <0.5 | <0.5 | <0.5 | 222 jd | # 4€1 # | 1 | 922 1 9 | S-13 | 28-14 | € 1 | <1 | ₹1\ | <1 | <1 | 14 to | <1: | < 1 | < t | - 1 | <1 | <1 | ~<1 | - 31 | <1 | <1 | <u> </u> | | 1,1,2-Trichlorcethane | 5 | ₹5 | <1 | <1 | 41 | <13 | <1 | ×1 | <17 | <1: | <0.5 | <0.5 | <0.5 | 25.12 | ë:' ∈1 ë | 4010 | ## ~1 0 | 141 | <1 | 3e1 | <1 | # €1 # | 3<1 2 | <1 | <1 | <1 | °<1°. | e t | <1 | -1 | <1 | 6 <1 | <1 | <1 | <1 | <1 | | Trichlorgethene | 5 | <5≎ | Par Trinz | <1 | 41 7 | : <1 : | - < 1 | <1 | <15 | €15 | <0.5 | <0.5 | <0.5 | <15 | E-1 | 46.100 | 78.5 | 21: | <1 | 241 | <1 | 4.2 | <.19. | 3.4 | 1.4 | <1 | ंदां | 0 e 10 | <1 | <1 | :<1: | .∵ ≥1 ∵ | <1 | <1 | <1 | <1 | | Freen-113 | 1200 | <0.8 | < 1 | <1 | ۲. | <1 | <1 | < 1 | <1 | 114 | <0.5 | <0.5 | <0.5 | ∹<5: | ≓ c1 i0 | 31 < 1 31 | 3 - 1 3 | -c1 | ii ∈1 : | #¥1: | ~1 0 | <1 | <1 | : <1: | <1: | <1 | (€ t) | e1: | ⊕ ∢1 ⊞ | 1<1 | ~<1 | : < 1 ′ | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | < 5 | F<10. | <1 | <16 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | * | ~ 15 | < 1 | 8410 | -c1 | e1 | : < 1: | | <1: | <1 | < | < 1 | /< 1: | <1 | i < 1 | J<1 | :<1: | - <1 · | <1 | <1 | <1 | <1 | <1 | | Total Halogenated Hydroca | ubons | | | | | | | 1 | | | | | | | | 2.0 | 296.8 | | | | | 22.2 | | 16.3 | 5.6 | | | | | | 7.1. | | | | | ~ | | Total Concentration of V | OCs | | | | | | | | 1 | T | Ī | | | | | 20 | 296.8 | | | | | 22.2 | | 16.3 | 5.6 | | i | | | | 1 | | | = | | === | | | | ш., | | | | | · | ٠ | | | | L | | | | ۳.0 | 220.0 | L | | \perp | | 22.2 | | 14.3 | 3.0 | | | | | | 1 | L | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit = Analysis by BC Laboratories ⁽D) = Duplicate Sample • = Detections are due to cross contamination during sampling # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MWP-1 | 0 (well | is on a | innual s | samplin | ıg) |---------------------------|---------|-------------|------------------|-----------------|------------------|------------------|---------------|--------------------|-------------------|---------|---------|---------|------------------|------------------|--------------------|--------------|-------------------|------------------|------------------|-------------------|-------------------|-----------------|----------------------|------------------|---------------|--------|--------------|----------|---------------| | Constituent | MCL | Nov-92 | Mar-93 | May-93 | Aug-93 | Nov-93 | Mar-94 | May-94 | Aug-94 | Dec-94* | Jan-95° | May-95* | Aug-95 | Nov-95 | Feb-96 | May-96 | Ju}-96 | Nov-86 | Feb-97 | May-97 | Aug-97 | Nov-97 | Feb-98 | May-98 | Aug-98 | Nov-98 | Jan-99 | 29-1qA | Aug-99 | | Aromatic and Non-Halo | genate | d Hydr | ocarbo | ons | | | | | | | | | | | | | | | | | | | | | | | | | | | Benzene | 1 | <5 | e1 | <1 | 21% | 1 15 | lects: | 361 | # <1 5 | <0.5 | <0.5 | <0.5 | <1/ | # <1 % | # <1 % | ₹1. | <1. | <1 | # <1 0 | <1 | -<1 | <1 | < [| <1 | <1 | .<1⊭ | <1 | <1 | <1 | | n-Butylbenzene | | <5 | <1 | 1 2 | # <1 # | # <1 # | 2412 | # 41 | 第54章 | <0.5 | < 0.5 | <0.5 | 罗芒门 | <2 | <2 | <2 | <2 | <1 | <1 | ~ 1 (| <10 | ₫ (₹1 6 | <1 | < 1: | <1 | <1 | 121 | <1 | <1 | | sec-Butylbenzene | | <5 | <1 | <1 | - <1 | <1 | <10 | #<14 | *** ** 1## | <0.5 | <0.5 | <0.5 | 墨油里 | 62 | <2 | <2 | <2 | ± <1 % | 1 <10 | 641 3 | < 1 | <1 | ं र 1ं | <1: | <1 | <1 | 801 | <1" | <u>(</u> < 1 | | ter-Butylbenzene | | °
∀ | 1 | <1 | 2 ₹1 (2) | 11210 | <1 | 2 c1 | <1 | <0.5 | < 0.5 | <0.5 | 2001 | :: <2 | ₹2 | <2 | 9<2% | # Z15 | 21 0 | <1 | Ø <1 40 | <1: | ci < 1 _{cd} | <1 | <10 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | ₹5 | 2 <1 | 1 | < 1 | <1 | <1 | <1 | ~<1 | <0.5 | <0.5 | <0.5 | 272112 | <2 | <2 | <2 | <2 | <1 | ें दो श | <1 | <1 | F < 1 | <1 | <1 | ° <1∞ | <1 | <1 | <1 | <1 | | Isopropylbenzene | | ି<5 | <1 | <1 2 | 2 <1 | # *1 # | <1 | 5 < 1 | # £1 | <0.5 | <0.5 | <0.5 | ## 21 ## | 57 ~ 1 5 | * <1 | 212 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5∷ | . <1 | . c1 | 41 | <1 | < 1⊕ | 141 | <1 | <0.5 | <0.5 | <0.5 | # ~1 # | - 1×1 | iić e j ⊊ | #° €14€ | <1 | <1 | <1 | <1 | ○ <1 ② | <1 | <1 | <1 | ~1 | <1 | 25218 | <1 | ∴<1 | | Naphthalene | | ¥5 | i <1 | /<1 ≟ | -c1 | < 10 | <1 | <1 | m < 1≅ | <0.5 | <0.5 | <0.5 | # c1 # | ∴<1 | ্ৰ † | <1 | <10 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | ::<2: | <2 | <2 | <2 | | n-Propylbenzene | | <5 | ÷ <1⊜ | %<1 % | **<1 | <1 | < 1 | 3<1 | <1 | <0.5 | <0.5 | <0.5 | 24 1 2 | <2 | <2 | <2 | <2 | <1 | <10 | ⊙<1∈ | `<1⊹ | <1 | <1 | <1 | <1 | ं<1⊹ | <1 | <1/ | <1 | | Toluene | 150 | ₹5 | <1 | <1 | <1 | a < 1 | e 1 2 | i < 1 | c1 | <0.5 | <0.5 | <0.5 | m < 14 | <1 | a.<1 | c1 | < 1 | Skile. | <1 | <1: | ି<1 | <1 | <1 | <1 | <1 | <1 | ং-1 | ં<1∷ | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | ح 1 | <1 | <1 | 221 | <1 | *<1 *** | # 21 5 | <0.5 | <0.5 | <0.5 | <1 | ∀1 | <1 | <1. | # 21 % | <1 | <1 | i < 15 | ∜ < 1∴ | <1 | <1 | °<1 | <1 | ~1· | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | ₹5 | 期間質 | 21 9 | <1 | # 21 | < [5] | et. | <12 | <0.5 | <0.5 | <0.5 | <1 | ₹2 8 | <2 | <2 | <2 | <1 | 141 | <1 | ेंदा | <1 | <1 | <1 | <1 | <1 | ·-<1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | 7 5 | <1 | <1 | <1 | <1 | <1 | #21E | <1 | <0.5 | <0.5 | <0.5 | 21212 | <2 | <2 | <2 | <2 | د 1 | <1 | % <1 00 | ે<1⊹ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | <1 | 1 21 | 7°<1 | <1 | <1 | 1 | <15 | 82111 | #121# | <1 | 部と)形 | 2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocal | bons | \Box | | Halogenated Non-Arom | atic Hy | ydrocai | rbons | • | | | | | | Carbon Tetrachloride | 0.5 | 25 5 | <1 | <1 | <1 | 210 | E <199 | # C 1# | <1 | <0.5 | < 0.5 | <0.5 | <1 | 141 9 | 49 N | 41 | -<1- | ं<1 ∶ | ~ ~1 0 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | <1 | <1 | | Chloroform | 100 | ~25 | ∂<1 % | - 1º | -21 | 张老1 章 | - 1- | ée†∷ | <10 | <0.5 | <0.5 | <0.5 | 15 | #21° | #414 | - 215 | 8817 | ** 1** | 21 | <1 | < 1 | <1 | < 1 | <1 | <1 | <1 | | <1 | <1 | | 1,1-Dichloroethane | 5 | < 5 | ## ** 10 | <1 | <1 | # <1 % | <1 | 6 < t | 21 | <0.5 | < 0.5 | <0.5 | <1 | 8°218 | /4 :1 | 2/<1/ | <1 | ं<1∷ | 4 <18 | <1 | <1 | <1 | <1 | <1 | J 21. | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | ं ₹ 1∷ | ં<1 | <1 | 2542 | <1 | <1 | 219 | <0.5 | <0.5 | <0.5 | 2 3 1 1 1 | # ~1 0 | 15 | <1 | <1 | <2 | <2 | <2 | <2 | ે<2⊹ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | ं ₹5 | <1 | <1 | 3741 | <1 | ~1° | i ci | P € 1 | <0.5 | <0.5 | <0.5 | ं द्रा | <1 | EK.188 | 41 | ₩ <1 ₩ | < 1 23 | # <1 3 | 2 < 1 A | <1 | 2610 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | < 5 | ं दे1 | < 1 | <1 | <1 | <1 | 67 <1 % | <10 | <0.5 | <0.5 | < 0.5 | 48 21 8 | 1 2 | %E <1 %€ | 2 <1 | < 1 | 421 | <1 | <1 | ं र 1 े। | V 1 | <1 | <1° | <1 | <1 | <1 | : | <1 | | trans+1,2-Dichloroethene | 10 | < 5 | ং < 1 | <1 | <1 | <10 | <1% | <1 € | <1 | <0.5 | <0.5 |
<0.5 | 55 41 | (* 1 *) | 11 | € <1# | ∷<1∵ | < 1 | <1 | <1 | ं<1 ∷ | c1 | <1 | <1 | <1 | <1 | " <1/ | <1 | <1 | | Methylene Chloride | 5 | <5 | <1 | <1 | <1 | < 1 | <1 | 5 < 1 (; | 141 | <1 | ્<1 | <1 | <1. | <10 | *<:1 | : <1s | H<186 | 2<1 2 | <1 | ~ <1 | <1 | <1% | <1 | <1: | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | <1 | # 21 2 | 261 | ାଟୀଙ୍କ | <1 | <1 | <1. | <0.5 | <0.5 | <0.5 | <1 | < 13 | 22 4.1 1% | E(<1) | <1 | :: cals | -<1 | <10 | ं<1 ⊱ | ुं/<1ं | < 1 | <1 | <1 | <10 | <1 | <1 | <1: | | 1,1,1-Trichloroethane | 200 | < 5 | 1 <1 | <18 | # <1 | <1 | <1 | <1 | F<1% | <0.5 | <0.5 | <0.5 | 141 | 21 | ~ 1 | 21 | <1: | i:0'<1;: | ें दी | <1 | <1 | √<1 | <1 | . <1 ₽ | <1 | <1- | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | Z<10 | 1≥ 1≥ | 911 | <10 | 2419 | | 1 | <0.5 | < 0.5 | <0.5 | 8 2 14 | <1 | 6 < 16 | 31 | 3) < 19% | <1 | # 21 0 | <1 | % ₹1 66 | 3<1 3 | <1 | <1 | <1 | <1 | 1 <1. | <1 | <1 | | Trichloroethene | 5 | <5 | 9 < 10 | <1 | # *1 | ₹1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | 241 | 要~1:3 | -C1 | ¥ ₹ 1€ | <1 | (1) | # '<1₽ | s <1 st | <1 | < 1 | <1 | (21) | <1 | ~1 11 | <1 | <1 | | Freon-113 | 1200 | <0.6 | 219 | <1 | 5/21 | <1 | ** | 22 1 1 | <1 | 0.82 | <0.5 | <0.5 | <5 | %1 | 37418 | 2€1 | a < 100 | 8 3-1 2 | * | <1. | 25 4 146 | :.<1::: | %<1 % | 9<15 | 6<10 | -<1- | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | √ 5 | <1 | <1 | ×1 | # < 18 | 1 × 18 | :-:11 | <1 | <0.5 | <0.5 | <0,5 | ě1 | 121 8 | 341 | # * | | < 1 | <10 | <1 | (3%-1 %) | <1 | # < 1# | <1 | 7217 | <1. | <1 | <1 | <1 | | Total Halogenated Hydroca | arbons | | | I | | | | | | 0.82 | Total Concentration of V | OCs | | | Ī | | I | | I | T | 0.82 | | | <u> </u> | | | | | Ī | T | | | | | | | | | | $\overline{}$ | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories ารถูสัสสารสาราชการเลย - พระเจ้า (จักร ซิส # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | MW76 | -1 (wel | l is on | semi-a | nnual s | sampli | ng) | | | | | | | | | | | | | | | | | |--------------------------|---------|---------------|-------------|--------------------|-----------------|---------------------|--------------------|----------------------|-----------------|------|---------|---------|-----------------------|------------------|-----------------|-----------------|-------------------|-------------|-------------------|-----------------|--------------------|--------|-----------------|--------| | Constituent | MCL | Dec-92 | Mar-93 | Мау-93 | Aug-93 | Nov-93 | Mar-94 | Jun-94 | Sep-94 | (D)* | Dec-94* | Mar-95* | Aug-95 | Mar-96 | Aug-96 | Dec-96* | Mar-97 | Jun-97 | Aug-97 | Feb-9B | Sep-98 | Feb-99 | Sep-99 | Feb-00 | | Aromatic and Non-Halo | genat | ed Hyd | drocarb | ons | Benzene | 1 | < 5 | <1 | % < 150 | <1 | /-<1 | <18 | <1 | 4<14 | <0.5 | 0.63 | 0.64 | <10 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1. | <1 | <1 | <1 | | n-Butylbenzene | | <5 | <10 | <1 | % <1 % | <1 | <1 | , C 1 | ~<1 | <0.5 | <0.5 | <0.5 | া < 1 | <2 | ″<1≐ | <0.5 | <1 | <1 | <1 | <1: | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | < 5 | V1 | | <1 | < 1 | 7 | <1 | V | <0.5 | 1.2 | <0.5 | <1 | <2 | <1 | 0.64 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | ₹5 | ~1 | ~ (1 | <1 | <1 | <1 | 2 21 | 7 | <0.5 | 1.2 | <0.5 | 3 < 1 = | <2⁻ | <1 | 0.74 | <1 | <1 | <1 | <1 | <1 | <1 | <15 | ⊳<1 | | Ethylbenzene | 700 | <5 | <1 | | | | *** | 12 | | <0.5 | 1.2 | <0.5 | <1 | <2 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <10 | <1 | | Isopropylbenzene | | <5 | <1 | HE H | | <1 | <1 | 1 | 1 | <0.5 | 0.52 | <0.5 | <1 | <1 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | { | | #41 | <1 | <1 | 1 | <1 | <0.5 | <0.5 | <0.5 | ₹1 | <1 | <1 | <0.5 | <1. | <1 | <1 | <1 | <1 | ্<া | <1 | <1 | | Naphthalene | | <5 | <1 | # < 1# | <1 | <1. | <1 | <1 | (C) < (1) | <0.5 | <0.5 | <0.5 | i6<14 | #<1 2 | <2 | <0.5 | <2 | <2 | <2 | <2 | , c 2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | < | ::<1∰ | <1. | ::<1::: | :-<1::: | <10 | # < 1 | <0.5 | <0.5 | <0.5 | - 1 = 1 | ∴<2 | ~ < 1 | <0.5 | ~<1 iii | <1 | <1 | 1 < 1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | 10<15 | #(21 # | 41 | #<1# | **<1 *** | # 21 # | <1 | <0.5 | <0.5 | 0.55 | ≝ <1 | <1 | <1 | <0.5 | <1 | # (1 | <1 | ্ব1 | // <1 f | 1141 | 1 <1 | · <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | # < 1# | *<1 * | <1 | <1 | <1 | 4 21 8 | # * 1# | <0.5 | <0.5 | <0.5 | ~1 4 | <1 | <1 | <0.5 | <1 | ্<া | 1 | <1 | E<10 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | <1 | *<1* | °₹1% | <1 | 121 | ~1 1 | 21 | <0.5 | <0.5 | <0.5 | ~1 | <2 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | < 5 | 15 | **<1# | *<1° | ~1 | <1 | ~11 | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <1 | < 0.5 | <1 | ং 1 | ं,<1 [ा] | <1 | <1 | <1 | ⁻ <1 | <1 | | Xylenes, total | 1750 | <5 | <15 | 2<15 | <1 | @ <1 }} | <1 | <1 | (1) | <1.0 | <1 | | !!!<!--!</b--> | <2 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydroca | rbons | | l | | | | | | | | 4.75 | 1.19 | | | | 1.38 | | | | | | | | | | Halogenated Non-Aron | natic F | lydroca | arbons | Carbon Tetrachloride | 0.5 | <5 | <10 | <1 | 2417 | 41 | <1 | 141 | #i 21# | <0.5 | <0.5 | <0.5 | <1 | 241 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <12 | 7<1 | <1 | <1 | <1 | 1219 | <1 | <0.5 | <0.5 | <0.5 | 1 | ۲۱ - | ~ 1: | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | <1 | 1 | 1 | 41 | <1 | <1. | 1 < T | <0.5 | 0.66 | <0.5 | 1.3 | 1.7 | <1 | 0.70 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | < 5 | <1 | | -<1 | 41 | <1 | < 1 | <15 | <0.5 | <0.5 | <0.5 | <10 | <1 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | <1 | < 1 | a <1 a | :: <1 ::: | .:<1:: | .:: < 1 37 | # <1 a | <0.5 | 1.4 | <0.5 | s <18 | : <1:: | <1 | 0.75 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | 13.4 | 9.4 | 11.1 | 7.6 | 5.8 | 4.9 | 8.5 | 2.3 | 3.9 | 21.0 | 12.0 | 6.1 | 5.6 | 8.3 | 14.0 | 13.2 | 12.4 | 7.9 | 9.6 | 6.3 | 8.5 | 6.2 | 9.0 | | trans-1,2-Dichloroethene | 10 | <5 | · <1 | | <1 | <1 | 1 15 | ~1 | 4414 | <0.5 | <0.5 | <0.5 | <1 | 21 11 | <1 | <0.5 | <1 | <1 | <1 | ं<1∛ | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | 1 | 1 | <1 | <1 | <1 | 1 | 学さ1選 | <0.5 | 1121 | <1 | *<1 | <1 | <1 | 4<1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | #<1# | | # < 1 | 4.8 | 11 | | 5.4 | 6.0 | 0.62 | <0.5 | 2.0 | 2.5 | <1 | 0.77 | <1 | <1 | 12.4 | <1 | <1 | <1 | <1.5 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | <1 | <1 | <1 | <1 | <1 | 1 | ¥ | <0.5 | <0.5 | <0.5 | <1. | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | :<1 | | 1,1,2-Trichloroethane | 5 | <5 | <1 | 11 | <1 | <1. | <1 | \ | * | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Trichloroethene | 5 | <5 | 4.8 | 6.0 | 4.5 | 2.7 | 3,2 | 3.0 | 1.6 | 1.9 | 9.7 | 3.2 | 2.7 | 3.0 | 1.6 | 2.1 | 3.5 | 2.5 | 3.7 | 4.2 | 1.8 | 1.5 | 1.8 | 2.9 | | Freon-113 | 1200 | <0.6 | <1 | #:<1# | #<1 # | m<122 | <1. | <1 | <1 | <0.5 | <0.5 | <0.5 | <5£ | # <1 = | <1 | <0.5 | ∂ <10 | <1 | :<1:° | <1 | 98 <1 88 | <1 | E:<1:0 | <1 | | Vinyl Chloride | 0.5 | <5 | <1 | % < 1 ** | <1 | <1 | <1 | 1 | é t | <0.5 | <0.5 | <0.5 | 1041 | 4<1 | <1 | <0.5 | # <1 2 | <1 | <1 | <1 | <1 | <1 (| <1 | <1 | | Total Halogenated Hydroc | arbons | 13.4 | 14.2 | 17.1 | 12.1 | 13.3 | 8.1 | 11.5 | 9.3 | 11.8 | 33.38 | 15.2 | 12.1 | 12.8 | 9.9 | 18.32 | 16.7 | 14.9 | 24.0 | 13.8 | 8.1 | 10.0 | 8.0 | 11.9 | | Total Concentration of \ | /OCs | 13.4 | 14.2 | 17.1 | 12.1 | 13.3 | 8.1 | 11.5 | 9.3 | 11.8 | 38.13 | 16.39 | 12.1 | 12.8 | 9.9 | 19.70 | 16.7 | 14.9 | 24.0 | 13.8 | 8.1 | 10.0 | 8.0 | 11.9 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit (D) = Duplicate sample ^{* =} Analysis by BC Laboratories ## **LBNL Groundwater Monitoring Well Results** Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 77-92-10 | (well is | on annu | al sampli | ng) | | | | | | | | ******* | | | | | | | |---------------------------|---------|---------------|------------|------------------|----------------|--------------------|--------------------|--------------------|-------------------------|---------------------|----------------|---------|----------------------|---------------------|--------------------|-------------------|---|--------|-----------------|--------| | Constituent | MCL | Oct-92 | Dec-92 | Mar-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | Jun-94 | Aug-94 | Dec-94* | Mar-95* | Aug-95 | Маг-96 | Jul-96 | Mar-97 | Aug-97 | Feb-98 | Aug-98 |
Feb-99 | | Aromatic and Non-Halog | genate | d Hydrod | carbons | | | | | | | | | | | | • • | | | | | | | Benzene | 1 | y 5 | <5 | ٧ | <1 | No. | <1 | <1 | <1/ | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | < 1 | <1 | <1 | <1 | | n-Butylbenzene | | < 5 | < 5 | ~1 | <1 | - V | ~1/1 | <10 | / <1/ | <1 | <0.5 | <0.5 | <1 | <2 | <15 | <1 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | v 5 | <5 | 7 | ₹ | 7 | <1 | 11 | 1 < 1 % | <1 | < 0.5 | <0.5 | <1 | <2 | F < 1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | <5 | <⊺ | <1 | | <1 | <10 | 1 <13 | <1 | < 0.5 | < 0.5 | <1 | <2 | <1 | <1 | <1 | <1 | <1. | <1 | | Ethylbenzene | 700 | v 5 | ~5 | 7 | (1 | ~1 | <1 | | <1 | 1 < 1 | <0.5 | <0.5 | <1 | <2 | <1 | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | <5 | < 5 | v | <1 | 7 | <1 | <1 | 11 | <1 | <0.5 | <0.5 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | <5 | .<1 | <1 | V I | <1 | 14<1.0 | < 1 | <1. | <0.5 | <0.5 | <1 | ্<1 | ∴<1:: | ⊹ <1 | <1 | <1 | <1 | <1 | | Naphthalene | | <5 | ≺ 5 | < 1 28 | <1 | 7 | <1 | 4.416 | < 1 | <1 | <0.5 | <0.5 | <1 | <1cc | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | < 5 | (1 | <1 | 2 4 1 10 | ad <1 00 | 110 | < 1 | <1 | <0.5 | <0.5 | <1 | <2 | <1.7 | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | <5 | (1) (1) | <1 | | <1 | 膨紅網 | <1 | 8/4 <1 /4 | <0.5 | <0.5 | 35 < 1 (4) | ~ 1 · : | %<1 | <18 | 13 × 13 × 13 × 13 × 13 × 13 × 13 × 13 × | <14 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | < 5 | ***1 | 44. 41 | | <1: | 98 < 198 | 946180 | <1 | <0.5 | < 0.5 | <1 | 56 < 55 | 2413 | <10 | <1 | < 1 | - < 1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | <5∷ | 1 | ~1 | # 21 (8) | <1 | <1 | # 21 | 41 | <0.5 | <0.5 | <1 | <2 | अ स्त ित | \$# \$ 185 | <1 | <1 | /<1/ | <1 | | 1,3,5-Trimethylbenzene | | <5 | < 5 | <1:: | # <1 | 11 | <1.0 | | 1 | <1 | <0.5 | <0.5 | <1 | <2 | <1 | e ₹1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | <5 | <1 | 1 €1 5 | <1 | <10 | 1121 | / < 1 | 1210 | महाम | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocar | bons | Halogenated Non-Aroma | atic Hy | drocarbo | ons | | | | | | - | | | | | | • | • | | | | | | Carbon Tetrachloride | 0.5 | <5 | < 5 | <1 | :<1 | V 1 | ~ <1 ::: | 4.<1 | ~ ~ 1 | <1 | <0.5 | <0.5 | <1 | <1: | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <5 | # <1## | <1 | <1 | 1 | <1 | 7 1 1 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ं <1 | | 1,1-Dichloroethane | 5 | V 5 | < 5 | 21 State | | <1 | 2 1 1 | ## < 1 | <1 | PE-160 | <0.5 | <0.5 | <1 | <1 | <1 | <10 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | <5 | # 21 F | - 1-2 | 1 | <1 | 22-<199 | 3021 | <1 | < 0.5 | <0.5 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | ₹5 | <5 | <1 | | ~ 1 | *** 1 | | <1 | # <1 99 | < 0.5 | <0.5 | <1 | <1 | <1 | <1. | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | ₹5 | < 5 | 7 | <1 | <1 | <1 | ## <1 | 15 | <1 | <0.5 | <0.5 | ₹1 | <1 | <1 | ं<1∵ | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | **5 * | <5 | 15 | <1 | <1 | | | 1 <12 | # ~ 1# | <0.5 | <0.5 | * *1 | <1 | S < 187 | <1 | <1 | <1 | < 1 | <1. | | Methylene Chloride | 5 | <5 | <5 | | 112 | <1 | 115 | 24 | <1 | <1 | #1 2 1# | | ## * 100 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | 11.0 | 4.3 | 2.9 | 3.3 | 2.2 | 3.6 | | 1.3 | 1.2 | 1.1 | <1 | 4.0 | 1.1 | <1 | <1 | <1 | <1 | <.1 | | 1,1,1-Trichloroethane | 200 | < 5 | 8.7 | 2.3 | 1.5 | 1.3 | 1.0 | \$ <1 % | < 1 | ₹1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <5 | <1 | <1 | 4 < 1 | < 1 | #K<1#4 | <1 | <1 | <0.5 | <0.5 | ₹1 | <1 | //: <1 ⊕ | <1 | <1 | <1 | <1 | ::<1: | | Trichloroethene | 5 | <5 | <5 | <1 | <1.0 | € € 1 | # < 183 | <1 | ::: :< \ :::: | <11 | <0.5 | <0.5 | ja €1 8a. | 2.0 | <1 | <1 | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | *** | ं<0.6 | ± <10€ | <1.0 | 197. 61 98. | - < 10 m | 4<1 | <1 | <1 | <0.5 | <0.5 | <5 | <1 | <1.5 | <1 | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <5 | <5 | <1 | <1 | <10 | <1 | <1: | 1 <10 | <1 | <0.5 | <0.5 | 21 | <1 | <i>₹</i> < 1 / 2 | <1 | <1 | <1 | <1 | <1 | | Total Halogenated Hydroca | rbons | | 19.7 | 6.6 | 4.4 | 4,6 | 3.2 | 3.6 | | 1.3 | 1.2 | 1.1 | | 6.0 | 1.1 | | | | | | | Total Concentration of V | OCe. | | 19.7 | 6.6 | 4.4 | 4.6 | 3.2 | 3.6 | | 1.3 | 1.2 | 1.1 | | 6.0 | 1.1 | T | T | I | | T | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit · 探教第5名。1020年4月12日2日 * = Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | ĭ | 61-92- | 12 |--------------------------|---------|---------|---------------------|--------------|----------------|----------------------|--------------------|--------------------|--------------------|------------------|---------|---|---------------------------------------|-------------------|------------------|--------|---|------------------|------------------|-----------|---------------------------------------|------------------|-----------------|-------------------|---------------|--------------|--------|--------| | Constituent | MCL | Dec-92 | Mar-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | J บก-94 | Sep-94 | Nav-94* | Mar-95* | Sep-95 | Mar-96 | Aug-96 | Mar-97 | Jun-97 | Aug-97 | Nov-97 | Feb-98 | Jun-98 | Sep-98 | Nov-98 | Feb-99 | May-99 | Aug-99 | Nov-99 | Feb-00 | May-00 | | Aromatic and Non-Halo | ngenat | ed Hyd | rocarbo | ns | | | | | | | | | | <u> </u> | | | *************************************** | | | | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | Benzene | 1 | <5 | <1 | 1 2<1 | <1 | <1 | 6216 | 192190 | ^ <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | e1: | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | <5 | <1 | <1 | <10 | <1 : | 5 < 1 | <12 | | <0.5 | <0.5 | HEHW. | <2 | <1 | - 1 | <1 | 97 21 | ं<1 ः | <1 | <1 | <u>جَا</u> | <1 | <1 | <1 | <1 | < 1. | <1 | <1 | | sec-Butylbenzene | | <5 | 16 2 10 | * <1 | <1 | 12 21 9 | 1002-100 | 79 2-1 59 | 21/4/19 | <0.5 | <0.5 | - č1 | ₹2 | - 21° | 8.4 | <1 | -c1 | <1 | F < 1 | <1 | ₹1 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | 112 | <1 | 219 | <11 | 21 | W < 1 | 9/21/ | <0.5 | <0.5 | 21 | ₹2 | 1121 | 41 | <1 | <1 | <1 | ं <1 ਂ | <1 | <1 | <1 | 1 | ं<1○ | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <5 | 1124 | 1 | <1 | <1 | 107-120 | 141 | 112 | <0.5 | <0.5 | ं<1 ∰ | <2 | 2215 | 411 | <1 | <1 | <1 | ं<1 ∴ | <1 | √<1 ¹¹ | <1 | <1 | <1 | <1 | ′<1° | <1 | <1 | | Isopropylbenzene | | <5 | <1 | <1 | | 11 | | # * | <1 | <0.5 | <0.5 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-isopropylioluene | | <5 | 100 | <1 | 144216 | 21 < 1 (1) | | # TE | ## 21 99 | <0.5 | <0.5 | ~1 | ~ 1: | 40 41 49 | # ~1 # | : <1° | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | - < t | <1 | | Naphthalene | | ₹5 | *** | 1221 | ##Z190 | ~1 | (F<10) | # 21 | 38218 | <0.5 | <0.5 | <1 | #413 | - 22 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propyibenzene | | ₹5 | 11211 | <1 | 21 22 | <1 | % | | ## <1 ## | <0.5 | <0.5 | <10 | <2 | 2014 | # ~1 % | <1 | //<1 | <1 | ∵<† ः | <1 | -c1" | <1 | i <1 : | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | 2.0 | ## # | ## 21 # | 1117 | # < 1 .4 | <1:: | # < 1 | <0.5 | <0.5 | (< 1) | \$°€1 [®] | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ·<1 | <10 | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | <1 | 341 8 | <1 | V | 18 <1 98 | april 166 | <1 | <0.5 | <0.5 | ~1 ° | <1 | ં <1 | 421 | <1 | <1 | [∞] <1⊕ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | .c1. | <1 | | 1,2,4-Trimethylbenzene | | <5 | <1 | | <10 | <1 | ~1 | 04410 | ±0€1% | <0.5 | <0.5 | <1 | <2 | <13 | <1 | <1 | <1 | <10 | F< 100 | 41 | <1 | # <1 0 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | : | <5 | *** <1 ** | <18 | <1 | <1 :1 | <10 | # <1 | <1.0 | <0.5 | <0.5 | 58 <1 38 | v
V | ্ৰা | ~1 | <1 | <1 | ۲1: | : <1 · | <1 | ∴<1 90 | ं<1⊹ | <1 | ×1 | ∀<1 | <1: | %<1 | - <1 | | Xylenes, total | 1750 | <5 | <1. | <1 | <1.5 | j (] | ## <1 ## | - 1 | # ~ 1 1 | !<1 !! | <1~ | ্ব | · 2 | <2∵ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | ್.<2ಿ | <2 | ∵ ∢2 | ~<2 | <2 | <2 | <2 | | Total Aromatic Hydroca | rbons | | 2.0 | Halogenated Non-Aron | natic h | lydroca | rbons | • | | | Carbon Tetrachloride | 0.5 | <5∵ | <1 | | <10 | <1 | <1 | 94 ~ 1 79 | <1 | <0.5 | <0.5 | ?° <1 ?? | <1 | % <1 % | <1 | <10 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <1 | < 1: | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | ::< 1 :: | <1. | া <1∷ | <1 | <1 | <1 | <1∵ | <1
| <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | :6 <1 :0 | <1 | <1 | <1 | <1 | <16 | <1 | <0.5∶ | <0.5 | Ť | 1 <10 | 18 <1 % | ~1 | <1 | ं<1∵ | : < 1 | : <1 : | <1 | <1 | <1 | <1 | <1: | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | <1 | <1 | <1. | <1 | ∴ | # (<1 55 | 1 < 1 :: | <0.5 | <0.5 | ্ব | <1 | <2 | <2 | <2 | <2 | ·:<2:: | <2 | <2 | <2 | ∴<2∴ | · <2 · | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | <1 | <1: | <1 | <1 | <1 | <1 | <1.0 | <0.5 | <0.5 | <1 | V | <1 | <1: | <1 | ∘ ∈1 | 4 1 | <1 | <1 | . - 1 | <1 | <1 | ٧1. | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <5 | :-<1: | <1 | 4.<1 | <1±3 | -<1# | <1 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1≓. | ·<1 | <1 | <1 | <1 | ~ < 1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | < t : | <1 | . ₹1±0 | <1 | 24 | ~ 1 | 4161 | <0.5 | <0.5 | <1 | <1 | <1 | ং1 | . < 1 | s <1 | 4 1 | <1. | <1 | ~<1 | <1 | <1 | < 1 | ্<1 | <1: | <1 | <1 | | Methylene Chloride | _5 | <5 | <1 | <1. | <1 | 210 | # ~ | <1 | <1 | <1 | #218 | <1. | <1 | <1 | :r<1: | <1 | ીં<1 | <1- | ं<1∂ | <1 | <1 | <1 | <1 | ٧ | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | <1 | <1 | <1 | <1 | 3.9 | 7418 | ∄/≥1 ∄ | <0.5 | <0.5 | <1 | / <1 / | 第名## | ∯ < 1% | 218 | <1 | <1 | ં <1 | <1 | <1 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | <1 | <1 | <1 | <1 | # <1 | 90 ~ 1 | <1 | <0.5 | <0.5 | \$ < 180 | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | .<1 | <1 | <1 | <1. | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <1 | <1 | <1 | <1 | <10 | 41 | <1 | <0.5 | <0.5 | S < 1 | <1 | (<1) | <1 | <1 | <1 | <1 | <1 | ::<1::: | . <1 | ं<1∴ | <1 | <1: | ্ব1 | <1 | <1 | < 1 | | Trichloroethene | 5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <1 | 第44年 | 1 | 21 | <1 | 第名排 | 4×1 5 | £ <1 ⊕ | <1 | <1 | <1 | 月 ~1 等 | i∛ <1 % | ੰ<1 | <15 | <1 | <1 | | Freon-113 | 1200 | <0.6 | <1 | <1 | <1 | <1 | ## *1 # | 21 | 2412 | <0.5 | <0.5 | <5 | * | 1 | <1 | #<10 | <1 | <1 | <1 | <1 | <1 | <1 | ∴<1 / | <1 | i<1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <5 | <1 | <1 | <12 | <1 |) : | 量<12 | <12 | <0.5 | <0.5 | <1 | <1 | 学(1 字 | 21 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ∴<1∴ | < 1 | <1 | <1 | | Total Halogenated Hydroc | arbons | | | | | | 3.9 | <u> </u> | Total Concentration of | /OCs | | 2.0 | ļ | | | 3.9 | | | | | | | T | | I | | | | | | | | | | | | | | | | | • | | | • | - | · | | | | • | · · · · · · · · · · · · · · · · · · · | | | • | · | · | | | | | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | | | | nual sam | | | | | | | | | | | | | | | | | |---------------------------|---------|----------------|------------------|-----------------|-----------------|-----------------|---------|---------|------|------------|------------------|------------------|----------------------|-----------|--------|-----------|---------------|---------------|---|--------|--------| | Constituent | MCL | Aug-93 | Nov-93 | Маг-94 | May 94° | Aug-94 | Dec-94* | Feb-95* | (D)* | May-95* | Aug-95 | Nov-95 | Mar-96 | Jun-96 | Aug-96 | Nov-96 | Mar-97 | Aug-97 | Feb-98 | Aug-98 | Feb-99 | | Aromatic and Non-Halog | enated | Hydroca | arbons | | | | | | | | | | | | | | | | | | · | | Benzene | 1 | <1 | <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | 7 | 1.41 | <1 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1. | <1 | <1 | <1 | <1 | < 1 | <1 | | sec-Butylbenzene | | ** | . <1 | <1 | <0.5 | 7 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <10 | <1 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | • | <1 | <1 | <1 | <0.5 | <1∄ | <0.5 | <0.5 | <0.5 | <0.5 | ::<1:: | <2 | // <2 | <2 | <1 | <1 | <1 | ·/<1 | <1 | <1 | <1 | | Ethylbenzene | 700 | (1 40) | <1 | V | <0.5 | ₹1 | <0.5 | <0.5 | <0.5 | <0.5 | <1.5 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | 261 5. | <1 | <1 | | isopropylbenzene | | <1 | * * 1 * . | <1 | <0.5 | <10 | <0.5 | <0.5 | <0.5 | <0.5 | ** <1 | <10 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | 1 | <1 | 9741 | <0.5 | %<1 | <0.5 | <0.5 | <0.5 | < 0.5 | %<1 /7 | # <1 % | - - | <1 | 生18 | < 1 | ~<1 | <14 | 91 2 13 | < 1 | <1 | | Naphthalene | | ~ ~ • | <1 | 1 | <0.5 | 4 1 | <0.5 | <0.5 | <0.5 | <0.5 | | # <1 = | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | ~1 0 | [™] <1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | # < 13 | <2 | <2 | <2 | <1 | <1 | : 21 3 | * <1 | <1 | <1 | < 1 | | Toluene | 150 | <1 | <1 | <106 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | ₹1 | <1 | 1219 | <1 | <1 | <1 | <18 | <1 | <1 | <1 | < 1 | | 1,2,4-Trichlorobenzene | 70 | ## ** | % < 1 | <1 | <0.5 | ₹1 | <0.5 | <0.5 | <0.5 | <0.5 | 1 | <1 | 5 < 16 | <1 | <1 | <1 | <1% | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <1 | 1 < 1 | <1 | <0.5 | :<1 : | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | ं<1∷ | <1 | <1 | | 1,3,5-Trimethylbenzene | | <1 | <1- | <1 | <0.5 | <1.5 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | < 1 | <1 | <1 | <1 : | <1 | <1 | <1 | | Xylenes, total | 1750 | <1 | <1: | <1 | <1.0 | <1 | <1 | <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarb | ons | Halogenated Non-Aroma | tic Hyd | Irocarbo | ns | | | | | | : | | • | | | | | | | | *************************************** | | | | Carbon Tetrachloride | 0.5 | <1 | ' ' ' | (<1) | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | 15 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <1 | < t | <1 | <0.5 | <18 | <0.5 | <0.5 | <0.5 | <0.5 | S<1 | <1. | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | 3.0 | 1.9 | <1 | 0.67 | 6 | 0.87 | 0.76 | 0.71 | <0.5 | <1. | <1 | / < I.v | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <1⊴ | . <1 | < 1 | ·<0.5 | <1 · | <0.5 | <0.5 | <0.5 | <0.5 | <1. | 7 <1 | <10 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | 4.1 | 2.2 | 1.5 | 0.73 | # *1 | 0.96 | 0.81 | 0.82 | <0.5 | #(<115 | <1 | <1 | <1 | < 1 | ং 1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | 5.1 | 2.2 | 1.2 | 0.64 | - <1 - | 0.87 | 0.69 | 0.72 | 0.50 | ~ (1/2 | <1 | <18 | <1 | <1 | 21 | -<1° | ं <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | ** | 141 | <1 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | 1 12 | 271 | <12 | <1 | <100 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <1 | <1 | <1 | <0.5 | 21 | <1 | | | 12 CT 12 C | | <11 | <13 | <1 | <1 | <1 | <1 | %<1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | 7 | * * * * | 1.0 | <0.5 | 3.0 | <0.5 | <0.5 | <0.5 | <0.5 | # ~ 1 | 1.2 | 1.5 | <1 | 21 | <1. | 1.5 | 2.3 | <1 | 1.4 | <1 | | 1,1,1-Trichloroethane | 200 | ٧1 | ~ 1 | <1 | <0.5 | 7 | <0.5 | <0.5 | <0.5 | <0.5 | 121 | 21 2 | 2<1 | <1 | <1 | <1 | <1 | ₫ <1∴ | <1 | < 1 | <1 | | 1,1,2-Trichloroethane | 5 | ₹ | * * 1 * | <1 | < 0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <15 | <1 | 2 < 1 | <1 | < 1 | <1 | <1 | <1 | <1 | < 1 | <1 | | Trichloroethene | 5 | 7 | <1 | 3 41 | <0.5 | ₹. | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | 1.1 | <1 | < 1 | <1 | <1 | <1 | <1: | <1 | <1 | | Freon-113 | 1200 | <1 | **<1 | -<1 | <0.5 | | <0.5 | <0.5 | <0.5 | <0.5 | <5 | <1 | -2 < 1 # : | e <1⊜ | <1 | <1 | <1 | <10 | ্বা | <1 | <1 | | Vinyl Chloride | 0.5 | <1 | < 1 | <1 | <0.5 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | (1) | <1 | ~1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Total Halogenated Hydroc | arboni | 12.2 | 6.3 | 3.7 | 2.04 | 3.0 | 2.70 | 2.26 | 2.25 | 0.50 | | 1.2 | 2.6 | | | | 1.5 | 2.3 | | 1.4 | | | Total Concentration of VC | Cs | 12.2 | 6.3 | 3.7 | 2.04 | 3.0 | 2.70 | 2.26 | 2.25 | 0.50 | | 1.2 | 2.6 | | | 1 | 1.5 | 2.3 | | 1.4 | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ^{* =} Analysis by BC Laboratories ⁽D) = Duplicate sample # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | T | 75-92-23 | (well is or | n annual s | ampling) | | | | | | | | | | | | | |----------------------------|----------|---------------|--|-------------------------|--|-------------------|---------------------------|----------------------|---------------------------------------|--|--|-------------------|-----------------------|------------------|--------------|----------|----------| | Constituent | MCL | Dec-92 | Mar-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | Sep-94 | Feb-95* | Aug-95 | Mar-96 | Jul-96 | Dec-96 | Feb-97 | Aug-97 | Aug-98 | Sep-99 | | Aromatic and Non-Haloge | nated H | ydrocarbo | ns | | | | 45.5 | | | | | | | | | <u> </u> | 1 · | | Benzene | 1 | <5 | <125 | <1 | ~ ~1 | ## **1 ### | £7 <1 | 199 5
109 | <0.5 | <1 | <1 | <1 | 100 < 1 0 0 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | <5 | <1 | <1 | <1 | <1 | * <1 ** | 16/21/50 | <0.5 | <1 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | <5 | <1 | <1 | * 1 | <1 | <1 | <1 | <0.5 | <100 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | <1 | <1 | <1 | <1 | | 1 <1 | <0.5 | < 1 | <2 | <2 | <1 | <1 | <1 | <1 | <u> </u> | | Ethylbenzene | 700 | <5 | <1 | <1 | <1 | <1 | <1.5 | | <0.5 | <1 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | | Isopropyibenzene | | <5 | : | | <1. | (| <1 | 50 %< 1450 | <0.5 | <1 | <1 | V | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | | <1 | <1- | 2 21 | ## <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <10 | <1 | <1 | | Naphthalene | | <5 | | <1 | <1 | 4-1 | i05 <1 | ** 1 | <0.5 | 61 5 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | 21 | 20 6100 | | * <1 | 1 | 10-61 | <0.5 | 21075 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | Tig and | 7 <1 | ************************************** | <1 | * d | 714 | <0.5 | 15 | 1 | 21 | <1. | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | | <1 | <1 | <1 | <1 | 141 | <0.5 | 11511 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | <1 | <1 | <1 | <1 | . | <1 | <0.5 | - 1 × 1 | <2 | <2 | | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | <1 | <1 | <1 | //<1 | <1.54 | - <1 | <0.5 | <1 | <2 | <2 | <165 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | <1. | 4155 < 1 55 6 | <1 | | <1 | <1 | <1 | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ons | | | | | | | | | | | | | | | | | | Halogenated Non-Aromat | ic Hydro | carbons | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | <u> </u> | | | | | | Carbon Tetrachloride | 0.5 | <5 | <1 | <1 | <10.7 | <1 | 1. | <1 | <0.5 | <1 | Se < 1 - 5 : | <1 | <1 | <1 | | <1 | <1 | | Chloroform | 100 | <5 | <1 | <1 | 2 4 11 21 | <1 | <1 | | <0.5 | | ## <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | 3.64 1 .65 | | <1 | | - C1 | | <0.5 | - 154 | | <1 | 1879 21 800 | <1 | 25 < 100 | <1 | ` <1 | | 1,2-Dichloroethane | 0.5 | <5 | 224 < 1 | ### <1 ### | 7 | | 664 1 | | <0.5 | <1 | 244<144 | <1 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | ~1 | 100 ~1 00 | 7 | <1.5 | E42118 | 900 <1 5 | <0.5 | | €1.4± | <1 | <1 | ₹1 ⁻⁷ | ~~
~~19~ | ~1° | <u> </u> | | cis-1,2-Dichloroethene | 6 | <5 | 9092134 | | , V | 1000 E | # 21 W | | <0.5 | ************************************** | 2012/1991 | <10 | - / < 1 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | <1 | | **** | # * 1 | | ্ব | <0.5 | 100776 | 21 | <1 | * | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <5 | | <1 | 1 | <1 | | | | 100 2 100 | ************************************** | - <1 · | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | < 5 | :::::::::::::::::::::::::::::::::::::: | <1 | V | <19.5 | | <1 | <0.5 | <1 | | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | <1 | | < 1 | ·····< 1/- | - V | <1 | <0.5 | <1 | 1.0 | <1: | <1 | <1.00 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | 6 4 (1) 6 | <1 | <1 | <18 | 100 < 100 | 4.4 | <0.5 | <1 | 1.15 | ### *1 0## | <1 | <1 | 21 | <1 | <1 | | Trichloroethene | 5 | 4.4 <5 | /- : <] | νī | <1.3 | <1 | <1 | | <0.5 | | 21 | <16 | ~ 21 | <1 | 212.00 | <1 | <1 | | Freon-113 | 1200 | <0.6 | 8/4 <1 /4/4 | ~ [] | 4 | ~1 | 3 < 1 = 1 | ## ! <1## | <0.5 | <5 | 11021 | <1 | <1 | 21 31 B | | <1 | <1 | | Vinyl Chloride | 0.5 | <5 | 11 | ~1 | ~ 1 | ## <1 | [] [* [*] [*] | 998 3 1996 | <0.5 | 13 | *1 | <1 | 21 ° | <1 | <1 | <1 | <1 | | Total Halogenated Hydroca | arbons | | | | | | | | | | 1.0 | ⊕.4 .27.1. | | 3.0 | 10 1 7 40 12 | | | | Total Concentration of VO | | | | | | | | | | | 1.0 | | L | | | | | | . J.C. Johnshift Hon VI VO | | L | | | | | | | | | 1.0 | | | | | - 1 | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ^{* =} Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results #### Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 75B-92- | 24 (well | is on a | nnual sa | ımpling) | | | | | | | | | | | | | | | | |--------------------------|----------|--------------------|----------|---------|--------------------|-----------|----------------------|------------|--|-----------------|----------------------|----------|---------|---------------------|--------|-----------|----------|-----------------|--------|--------|--------| | Constituent | MCL_ | Oct-92 | (D) | Dec-92 | Маг-93 | Jun-93 | Aug-93 | Nov-93 | Mar-94 | May-94 | Aug-94 | Dec 94* | Feb-95* | Sep-95 | Mar-96 | Jul-96 | Dec-96 | Mar-97 | Aug-97 | Sep-98 | Sep-99 | | Aromatic and Non-Halog | jenated | d Hydroc | arbons | Benzene | 1 | <5 | <2 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | <1 | | n-Butylbenzene | | <5 | 1 | <5 | <1 | ₹ | <1 | V | <1 | <1 | | <0.5 | <0.5 | <1 | <2 | <2 | <1 | <1 | < 1 | < | <1 | | sec-Butylbenzene | | <5 | | <5 | <1 | ₹. | <1 | V 1 | <1 | <1 | 58) < 1 86 | <0.5 | <0.5 | <1 | <2 | <2 | <1: | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | | <5 | <1 | | e <1 :: | 2.12 | 7a < 1 :0 | <1 | | <0.5 | <0.5 | E. < 15 | <2 | <2 | <1 | <11 | <1 | <1 | <1 | | Ethylbenzene | 700 | //(<5 / | ∂ <2 | <5 | :::<1 | <1 | <1 | 1 | <1 | 2(<1) | or en im | <0.5 | <0.5 | #K416 | <2 | <2 | <1 | <1 | <1 | <1 | · <1: | | Isopropylbenzene | | ##<5# | | <5 | <1 | <1 | <1.0 | 7 | <1 | ~<1 | # ~ 12 | <0.5 | <0.5 | * < 1 | <1 | *1 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | # < 5 # I | | <5 | <1. | <1 | <1 | 1 | ************************************** | <1 | 4134 | <0.5 | <0.5 | E-<1- | <1 | <1 | <1 | <1 | <1 | <199 | <1 | | Naphthalene | | <5 | | <5 | <1 | \ | ~ T | V | <1 | <1 | | <0.5 | <0.5 | 402404 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | 1 | <5 | ***<1 | | V 1 | ¥ | <1 | <1 | *** | <0.5 | <0.5 | - <1- | <2 | <2 | <1 | ~ < 1 | <1 | <1 | < 1 | | Toluene | 150 | <5 | <2 | <5 | <1 | No. | ব | V | <1 | <18 | \$<16€ | <0.5 | <0.5 | <1 | <1 | < 1 | <1 | - <1.∀ | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <5 | | < 5 | <1 | ~1 | <1 | <1 | <1 | <1 | # 21 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | ি<1% | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | | <5 | <1 | <1 | ~ 1 | V | <1 | <1 | <1 | <0.5 | <0.5 | i. < 1 | <2 | < 2 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | | <5 | <1 | <1 | <1 | (1 | <1 | -:<1:> | <1 | <0.5 | <0.5 | < 1 | <2 | <2 | <1.0 | ु<1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <50 | <2 | <5 | <1 | ₹ | <1 | <1 | <1 | <1 | <1 | ٧ . | <1.0 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocar | oons | Halogenated Non-Aroma | atic Hye | drocarbo | ns | | | | | | | | | | | | - | | | • | | | | | Carbon Tetrachloride | 0.5 | <5 | <2 | <5 | <1 | 11 | <1 | <1 | <1 | 3021 8 | <1 | <0.5 | <0.5 | - 41 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <5 | <2 | <5 | 15 | 1.3 | # 21 % | <1 | <1 | 14 | <1 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | ca<15 | < 1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | <2 | <5 | <1. | -<1. | 31<132 | <1 | <15. | <1 | <1 | <0.5 | <0.5 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | <2 | <5 | <1 | <1 | 48. < 190. | <1 | < 1 a | <1 | # * 1 # 1 | <0.5 | <0.5 | # <1 = | <1 | <1 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | <2 | <5 | <1 | <1.6 | ~1 6 | a < 10 c | <1 | 884 4 % | (14) | <0.5 | <0.5 | # <1 0 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <5 | <2 | <5 | | 55<165 | <1 | 4 < 1 | <1 | 354 1 43 | 41 | <0.5 | <0.5 | # <1 · | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | <2 | < 5 | /// / | | SE 2100 | <1 | <1 | ## 2 118 | 411 | <0.5 | <0.5 | # < 1 (1) | ି < 1 | <1 | <1 | 191 | 0.41 | <1 | <1 | | Methylene Chloride | 5 | <5 | <2 | <5 | | | | <1 | 24 | | 15 | 1 < 1 | <1 | # <1 · | <1 | <1 | <1 | 1411 | <1 | <1 | <1 | | Tetrachloroethene | 5 | ~5 | <2 | <5 | **<1 *** | 2.9 | 121 | <1 | <1 | | 21 | <0.5 | <0.5 | # <1° | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | <2 | <5 | 1 | <1 | 141 | <1 | <1 | | 1 > 1 | <0.5 | <0.5 | 4 < 1 | <1 | <1 | <1 | ~1° | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <2 | <5 | (13 | 2111 | | <1 | <1 !! | <1.2 | (1) | <0.5 | <0.5 | 3 < 1 | <1 | <1 | <1 | <1: | <1 | <1 | <1 | | Trichloroethene | 5 | <5 | <2 | <5 | 1 | 1.9 | <1 | <1 | <1 | 61 | <1 | <0.5 | <0.5 | 示<1 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | <1 | | <0.6 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <5 ··· | <2 | <5 | <1 | <1 | <1 | <1 | <1 | -1 | ~~1.5 | <0,5 | <0.5 | <1 | . < 1 | <1 | <1 | <1 | <1 | <1 | <1 | | Total Halogenated Hydro | carbon | s | | | | 6.1 | | Ċ | | | | | | | | | | | | | | | Total Concentration of V | OCs | | | - | | 6.1 | | | | | | <u> </u> | 1 | | | | Ī | İ | 1 | 1 | | | | | | | | | | 1 | | | L | L | | | L | t | | <u> </u> | | ł | , | | MCL = Maximum contaminant level for
drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis (D) Duplicate sample analyzed by Chromalab, EPA Method 8240 * = Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 # (concentrations in µg/L) | | | 76-92- | -25 (we | ell is c | n ann | ual sar | npling |---------------------------|--------|------------------|---------|----------------|----------------|------------------|--------------|--------------------|-------------------|---------------|-----------|-------|---------|----------|-----------------|--------------------|--------------|--------------------|---|--------|--------|-------------------|-----------------|--------|----------| | Constituent | MCL | | | | | 7 | | Mar-94 | May-94 | Aug-94 | Dec-94* | (D)* | Feb-95* | May-95* | Aug-95 | Nov-95 | Mar-96 | Jun-96 | Aug-96 | Aug-96 | Dec-96 | Mar-97 | Aug-97 | Aug-98 | Aug-95 | | Aromatic and Non-Halo | genate | ed Hyd | Irocart | ons | | | | | | | | | | | | | | | *************************************** | | | | | | | | Benzene | 1 | <5 | <5 | <1 | 2<1 | <1 | <1 | 4 <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ∮<1∜ | <1 | <1 | <1 | | n-Butylbenzene | | < 5 | <5 | 21 | 251 | <1 | <1 | # 15 # | | 2H3 | <0.5 | <0.5 | <0.5 | <0.5 | 21 | <2 | <2 | <2 | ~ 1 | <1 | <1 | ি<1 | <1 | <1 | <1 | | sec-Butylbenzene | | <5 | <5 | * 31 | 1 < 1 | <1 | <1 | <1 | 1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | ং1 | <1 | <1 | ′′<1 ′′ | <1 | <1 | <1 | | ter-Butylbenzene | | <5 | <5 | <1 | | <1 | <1 | 7 | 1 | 21 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | <1 | · <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <5 | <5 | 15 | 77 | <1 | <1 | 7 | <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | ं<1 ः | <1 | <1 | .:<1 [⊕] | <1 | <1: | <1 | | Isopropylbenzene | | <5 | <5 | 1 < 1 : | <1 | <1 | <1 | V 1 | 713 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <5 | <5 | <14 | #<1# | <1 | <1 | <1 : | <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | . < 1 | < T | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Naphthalene | | <5 | <5 | 12 | <1 | <1 | < 1 | ¥ < 1 !! | <1 .6 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <5 | < 5 | <1 | <1 | <1 | <1 | <1 | # <1 # | <1 | <0.5 | <0.5 | <0.5 | <0.5 | *<1 | ₹2 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Toluene | 150 | <5 | <5 | 1216 | <1 | # <1 8 | <1 | 124 | 141 | < 1 | <0.5 | < 0.5 | <0.5 | <0.5 | #<1# | €1″ | <1 | <1 | <1 | <1 | <1 | *<10 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | ₹5 | <5 | <1 | <1 | ব | <1 | *<1 | \$00 ~1 \$ | <1 | <0.5 | <0.5 | <0.5 | <0.5 | ेंद्री | <1 | <1/ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <5 | <5 | <1 | <1 | <1 | <1 | <1 | 1816 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | % <10 | <1 | <1 | <1 | [<1] | <1 | <1 | | 1,3,5-Trimethylbenzene | | <5 | <5 | 1 | <1 | <1 | <1 | 1 | # 2 18 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | i <1 | <1 | <1 | | Xylenes, total | 1750 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | <10 | <1 | <1 | <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocar | bons | <u> </u> | | Halogenated Non-Aroma | atic H | vdroca | arbons | Carbon Tetrachloride | 0.5 | <5 | < 5 | <1 | <1 | 441 | | <10 | 1 | 27 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | ं<1 ं | <1 | <1 | <1 | <10 | <1 | <1 | <1 | | Chloroform | 100 | <5 | < 5 | <1 | 1 | <1 | <1 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | a. < 1 ≦ | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | <5 | <5 | <1 | 1 21 | <15 | <1 | <1a | <1 | <1 | <0.5 | <0.5 | < 0.5 | <0.5 | 21 | <1 | <1 | . < 1 | ્રા - | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <5 | <5 | <1 | <1 | <1 | <1 | <10 | # * | <1 | <0.5 | < 0.5 | <0.5 | <0.5 | 6<1 % | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <5 | < 5 | <10 | <1 | <1 | <1 | <1 | 6<1 0 | <1 | <0.5 | < 0.5 | <0.5 | < 0.5 | स्त | <1 | <1 | 5 - 1 5 | -<1 (| <1 | <1 | | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | ₹5 | <5 | <1 | # ~ 1 = | <1 | <1 | * < 1 ** | #<1# | <1 | <0.5 | <0.5 | <0.5 | <0.5 | #21# | T 2 1 | 41 | 8 61 8 | <1 | <1 | <1 | <1. | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <5 | <5 | <18 | 21 | 12211 | <1 | ~~1 | -11 | <1 | <0.5 | < 0.5 | <0.5 | <0.5 | 217 | <1 | 1 2 1 | <1 | <1 | <1 | <1 | <1 | ~<1: | <1 | <1 | | Methylene Chloride | 5 | <5 | <5 | <1 | | <1 | 1 211 | 1212 | 152 | <1 | 21 | | 1127 | 1 | 1761 | ~1 | <1 | 21 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <5 | <5 | <1 | 121 | <1 | <1 | 11.9 | 23 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | ٤1 | 6.8 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | #<1# | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1 | <1 | . < 1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <5 | <5 | < 12 | <1.5 | <1 | <1 | <1 | 41 6 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | i<1: | <1 | <1 | 41 | <1 | <1 | <1 | -\ <1:° | <1 | <1 | <1 | | Trichloroethene | 5 | <5 | < 5 | <10 | 27 . | <1 | <1 | 5.2 | 8<18 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <1:: | <1 | <1 | #' <1 # | <1 | <1 | <1 | W 216 | E<16 | <1 | <1 | | Freon-113 | 1200 | # <1 @ | -:<1- | <1 | -<1: | 6<1 00 | <1 | ** 1 ** | 1 <1 | <1 | <0.5 | <0.5 | <0.5 | <0.5 | <5 | 5° <1 0° | <1* | 131 | <1 | <1 | <1 | ~ 1 | (e) | ~ (1 · | <1 | | Vinyl Chloride | 0.5 | <5 | < 5 | <1 | ~1 | <1 | <1 | # *1 # | 置名用 | <1 | <0.5 | <0.5 | | <0.5 | 21 | <1 | 15 | 14 21 5 | ~ 1 | <1 | <1 | | \$246 | <1 | <1 | | Total Halogenated Hydroca | rbons | | | | | | | 17.1 | | | | | —. | | | 21,46 | | | 6.8 | | | | - | | | | Total Concentration of V | OCs | | | T | | | | 17.1 | | | | | | | | | | | 6.8 | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit (D) = Duplicate sample ^{* =} Analysis by BC Laboratories # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 76-93 | -6 (well | is on | ann | ual san | spling) | | | | | | | | | | W | | | | | |--------------------------|--------|--|----------------|-----------------|---------|------------|---------------------|----------------------|---------------|---------|--------------------|--|---------------------|------------------|--------------------|-------------------|----------------|----------------|---------------------------------------|---|---------------| | Constituent | MCL | Oct-9 | 3 (D) | Mar | 94 | May-94 | Aug-94 | Dec-94* | Mar-95* | Jun-95* | Aug-95 | Nov-95 | Feb-96 | Jun-96 | Aug-96 | Dec-96 | Feb-97 | Aug-97 | Jan-98 | Aug-98 | Feb-99 | | Aromatic and Non-Halo | genat | ed Hyd | drocarb | ons | | | | | | | • | | | | | | | <u> </u> | · · · · · · · · · · · · · · · · · · · | <u> 5</u> | | | Benzene | 1 | <1 | <0.8 | 5 < | 122 | <1 | | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | 11 < 1 = | ~ | <1 | ্বা | <1 | <1 | <1 | <1 | | n-Butylbenzene | | 15 | <0. | 5 < | | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | .∛ <1 66 | <1 | .: <1 ::. | ~ | <14 | <1 | <1 | | sec-Butylbenzene | | <1 | <0.8 | 5 | | <1 | 21 8 | <0.5 | <0.5 | <0.5 | | <2 | <2 | <2 | 丰本1 章 | <1 | <1 | i<1:::# | -5 < 1 50 | ×<1 | <1 | | ter-Butylbenzene | | a e<1 | <0. | 5 6 < | liin i | <1 | 44. <1 3. | <0.5 | <0.5 | <0.5 | <1 | 2 <2∞ | <2 | <2 | #418 | <1 | <1. | <1 | <10 | <1 | <1 | | Ethylbenzene | 700 | 4 < 1 | <0.5 | 5 | litio i | <1 | - C | <0.5 | <0.5 | <0.5 | <1 | ~2 | <2 | <2 | ~1 | <1 | <1 | <1 | <1 | <1 | <1 | | Isopropyibenzene | | (4 < 1) | <0. | 5 / < | 186 | <1 | <112 | <0.5 | <0.5 | <0.5 | <1 | 1 | 11/1 | *** 1 *** | <2 | ~2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0. | 5 < | | <1 | ₹ | <0.5 | <0.5 | <0.5 | <1 | <1 | # 21 # | ## # | 1121 | <1 | ~1 ~ | <1 | ** <1 | <1 | <1 | | Naphthalene | | | <0. | 5 | | ~1 | 21 | <0.5 | <0.5 | <0.5 | 1121 | <1 | 1 3 | * K1 | <2 | <2 | <2 | <2 | <2 | <2 | · <2 | | n-Propylbenzene | | <1 | <0. | 5 | | <1 | <1 | <0.5 | <0.5 | <0.5 | 1 S 1 1 | <2 | <2 | <2 | - (1) | <1 | 11 <100 | <1 | <1 | <1 | <1 | | Toluene | 150 | 7 | <0. | 5 < | | 161 | <1 | <0.5 | <0.5 | < 0.5 | <1 | <1 | <1 | <1 | | <1 | <1 | <1. | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | ~ | <0. | 5 < | 1 2 | <1 | <1 | <0.5 | <0.5 | i:<0.5 | 41-4 | 4 < 1 m | ~1 | ii.≪1 | <1 | <1. | <1: | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | 7 | <0. | 5 | 1974 | <1.5 | <1 | <0.5 | <0.5 | <0.5 | ## < 1## | <2 | <2 | <2 | -0<1 | <1 | #15# | 112 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | V | <0. | 5 < | 1999 | <1 | | <0.5 | <0.5 | <0.5 | (ii) < 1-10 | <2 | <2 | <2 | 61 | €1 ° | 48 < 189 | 121 | <1 | 36217 | <1 | | Xylenes, total | 1750 | 1 | <1 | #
< | 1888 | <1 | 111 | 0 / 1 / 9 | <1 | | 1 | <2 | <2.2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydroca | rbons | | | | | | | | | | | | | | | | | i | | | | | Halogenated Non-Arom | atic H | iydroc | arbons | | | | | | | | | | | | | | | 4 | | | | | Carbon Tetrachloride | 0.5 | ii<1: | <0. | 5 | Lijis | | <10 | <0.5 | <0.5 | <0.5 | <1 | | # < 1 F | 2 < 1 - | - n < 1 | <1 | <10 | <1 | 1210 | ~1 :: | ⊹ ≥1 : | | Chloroform | 100 | 11 | <0. | 5 | 188 | | | <0.5 | <0.5 | <0.5 | -121 | | -1 | 41-41-4 | 14. S. 144 | - (< 1 | <1 | <1 | * <1a | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | ି ବୀ | | 1,1-Dichloroethane | 5 | 1.6 | 1.6 | | 1988 | 1.5 | | 1.5 | 0.98 | 0.72 | 1.0 | 1.2 | 14614 | 112 | 16483 | 100 | ## # | 2 3 1 1 | 110/2/15/1 | 1 × 1 = | <1 | | 1,2-Dichloroethane | 0.5 | ** <1 | <0. | 5 ' < | 1 | *1 | 数を付款 | <0.5 | <0.5 | <0.5 | <1 | *** 1 *** | | #4<10° | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | Tel. | <0. | 5 | | | 21 | <0.5 | <0.5 | <0.5 | <1 | <1 | *** | <1 | <1 | 285180 | | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | - 31 | <0. | 5 < | | -11 × 11 = | 21° | <0.5 | <0.5 | <0.5 | 21 | 1121 | <1 | :: < t | - 1 | *** < 1 | <1 | (1) | <1 | 9-1 <1 | <1 | | trans-1,2-Dichloroethene | 10 | | <0. | 5 < | 10,7 | met is | <186 | <0.5 | <0.5 | <0.5 | <1. | £ i < 1 30± | S <1 B | <1 | <1 | <1 | <1 | . <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | #5. < 10 | <0. | 5< | ĬŽ. | | <1 | 200 < 1000 | ## * 1 | <1 | <13 | 0.4100 | 98 (31) | <1 | <1 | <1 | 6 < 1 5 | / <1 | <199 | <1 | <1 | | Tetrachloroethene | 5 | ## e 18 | ~<0. | 5 1. | 3 | | # <1# | <0.5 | <0.5 | <0.5 | en San | 674 < 1 06 | 1.1 | 2.5 | 25 E E E E | * | | <1 | <1 | 28<1 3 | <1 | | 1,1,1-Trichloroethane | 200 | #<1 | <0. | 5 | 1944 | ******* | <1 | 20,5 | <0.5 | <0.5 | - C1 | <1 | 199 <1 39 | - 21 | <16" | <1 | 1413 | | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | 1872d | <0. | 5 < | 120 | 31 | # 21 # | <0.5 | <0.5 | <0.5 | 1281 | | 7001281055 | <1 | ## 21 | \$ 52 15 5 | <1 | | 19 2199 | 21 | <1 | | Trichloroethene | 5 | ************************************** | <0. | 5 < | 1 | 1 | 10 < 1 0 | <0.5 | <0.5 | <0.5 | 113 | | 1.2 | 1.1 | 100 | 21 | 45 × 15 | <1 | | <1 | <1 | | Freon-113 | 1200 | 15 | 50 (C.
566) | #MCJE | 1 | <1.5 | <1 | <0.5 | <0.5 | <0.5 | <5 | *** ********************************* | | <1 | <1 | <12 | <1 | - | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | 15.0 | <0. | 5 < | 1886 | <1 | @ <1 | <0.5 | <0.5 | <0.5 | <1 | . 15 | | <1 | ## ₹1 ;## | <1 | <1 | <1 | <1 | <1 | . <1 | | Total Halogenated Hydroc | arbons | 1.6 | 1.6 | 1. | 3 | 1.5 | | 1.5 | 0.98 | 0.72 | 1.0 | 1.2 | 2.3 | 3.6 | | | | | | | | | Total Concentration of \ | /OCs | 1.6 | 1.6 | 1. | 3 | 1.5 | | 1.5 | 0.98 | 0.72 | 1.0 | 1.2 | 2.3 | 3.6 | | | | | | l | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than ⁼ Less than Quantitation Limit ⁼ Compound not included in analysis ^{* =} Analysis by BC Laboratories ⁽D) = Duplicate sample # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 76-93-7 | (well is | on ann |--------------------------|---------|--|---------------------|--------|---------------|--|---------|---------|-----------------|--------------------|-----------------|---------------------|--------------------|------|----------|---------------------|------------------------------------|--------|-------------------|-------------|--------|--------| | Constituent | MCL | Oct-93 | Jan-94 | (D)* | Jun-94 | Aug-94 | Dec-94* | Mar-95* | Jun-95* | Aug-95 | Dec-95 | Feb-96 | Jun-96 | (S)† | Jun-96† | Aug-96 | Dec-96 | Mar-97 | Jun-97 | Feb-98 | Aug-98 | Jan-99 | | Aromatic and Non-Hale | ogena | ted Hydi | rocarbor | าร | Benzene | 1 | #1 61 # | / <1 | <0:5 | 1 <1 9 | 1 1/2 | <0.5 | <0.5 | <0.5 | 112 | <1 | <1 | <1 | <5 | <5 | <1 | <1 | 1 × 1 | 1 | <1 | <1 | <1 | | n-Butylbenzene | | 1141 | <1 | <0.5 | <10 | 45.5135 | <0.5 | <0.5 | <0.5 | 213 | <2 | <2 | <2 | <5 | <5 | <177 | // <1 % | <1 | <1 | <15 | <1 | <1 | | sec-Butylbenzene | | 214 | 216 | <0.5 | \$<19 | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <5 | <5 | 21 | <1 | <1 1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | 1 | * | <0.5 | - e1 | <1 | <0.5 | <0.5 | <0.5 | 41 | <2 | <2 | <2 | <5 | <5 | 1 <1.1 | <1 | <1 | 213 | <1 | <1 | <1 | | Ethylbenzene | 700 | * 1 | < | <0.5 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <5 | <5 | <1 | <1 | <1 | <1 | <10 | <1 | <1 | | Isopropylbenzene | | ~ | (1) | <0.5 | <1 | <1 | <0.5 | <0.5 | <0.5 | | # < 1 | <12 | < 1 | <5 | <5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | ::: <1 :∹ | a <100 | <0.5 | <12 | <1 | <0.5 | <0.5 | <0.5 | V | 5. <18. | E<15. | <1 | <5 | <5 | SE < 1 SE | <i>i</i> <1∴ | <1 | <1 | <10 | <1 | <1 | | Naphthalene | | * (1) | <1 | <0.5 | %<1 = | V 1 | <0.5 | <0.5 | <0.5 | - <1 | <1 | ∳ <1 € | <1 | | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | 441 | <15.5 | <0.5 | ं रा | ٧, | <0.5 | <0.5 | <0.5 | V T | ₹2 | <2 | <2 | <5 | <5 | <1 | <1 | <1 | 41 | <1 | <1 | <1 | | Toluene | 150 | 7 | ** | <0.5 | | V | <0.5 | <0.5 | <0.5 | ## <1 | 71 | <1 | <1 | <5 | <5 | <1 | <1 | P2413 | 113 | ິ<1∷ | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | 27 21 | <1 | <0.5 | # * 1# | <1 | <0.5 | <0.5 | <0.5 | | 414 | #121E | <1 | <5 | <5 | <1 | <1 | <1 | <1 | 21 | <1 | <1 | | 1,2,4-Trimethylbenzene | | | <1 | <0.5 | <1 | 1 | <0.5 | <0.5 | <0.5 | | <2 | <2 | <2 | <5 | <5 | <1 | ્<1ં | <1 | ं रा | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | < 1 € | ~1 | <0.5 | <1 | <1 | <0.5 | <0.5 | <0.5 | # <1 # | <2 | <2 | <2 | <5 | <5 | <1 | . < 1. | <1 | <1 | <1 | <1. | <1 | | Xylenes, total | 1750 | V | < 1 | <1 | <1 | <1 | <1 | <1 | 3<1 % | #4 61 | <2 | <2 | <2 | <10 | <10 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydroca | arbons | Halogenated Non-Aron | natic F | lvdroca | rbons | | | | | | | | | | | | | | | | | | · | · | | Carbon Tetrachloride | 0.5 | 12 1 2 12 12 12 12 12 12 12 12 12 12 12 12 12 | <1 | <0.5 | 11411 | 調製料 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <5 | <5 | <1 | | <1 | <1 | <1 | <1 | <1 | | Chloroform | 100 | <1 | 3.0 | 3.1 | <1 | <1. | <0.5 | <0.5 | <0.5 | <1 | < | <1 | <1 | <5 | <5 | <15 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | , <1 | <15.6 | <0.5 | <1 | <1 | <0.5 | <0.5 | <0.5 | 5 < 1 | < 1 | <1 | <1 | <5 | <5 | <1 | V | <1 | <1 | . <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | ं<1 00 | 40 < 1 86 | <0.5 | <10 | - <1@ | <0.5 | <0.5 | <0.5 | #E18 | <1 | /21 | <1 | <5 | <5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | ** <168 | < 1 | <0.5 | <1 | <15 | <0.5 | <0.5 | <0.5 | #E19 | <1 | <1 | <100 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | #41 | <1 | <0.5 | <1 | 4814 | <0.5 | <0.5 | <0.5 | 112 | 1 < 1 | <1 | 1 < 1 : | <5 | <5 | <10 | ं<1 | <1 | °<1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | 419 | <1 | <0.5 | <1 | 21 | <0.5 | <0.5 | <0.5 | <1 | <1.7 | <1 | 1121 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <1 | <1 | <0.5 | : | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1 | <1 | 14 | % (1) | <1 | <1 | <1 | <5 | <5 | <1 | <1: | <1 | · <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | Z1 , | 10.5 | 4.4 | 2.7 | # 6 1 | 0.81 | 0.73 | <0.5 | : | 2.2 | 1.7 | 2841 | <5 | <5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | | <1 | 0.8 | 4<1.5 | | <0.5 | <0.5 | <0.5 | <1 | <1⊪ | 55. <1 5. | <1 | <5 | <5 | <1 | <1 | <1 | 4<1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | 4.61 | < 1 | <0.5 | <1 | 75 < 1 5 | <0.5 | <0.5 | <0.5 | ## < 1## | <1 | <1 | <1 | < 5 | <5 ∹ | <1 | <1 | <1 | #F-61 | <1 | <1 | <1 | | Trichloroethene | 5 | ## * 1 | <1 | <0.5 | <1.1 | <1 | <0.5 | <0.5 | <0.5 | # k 1# | <1 | 2 < 1 | <1 | <5 | <5 | 2° <100 | <1 | <1" | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | ~ | | <0.5 | <1 | # <1 6- | <0.5 | <0.5 | <0.5 | * 5 | ~ <1 | 212 T | <1 | | | @ <1 55 | <1 | <1 | # &1 % | €1/ | <1 | <1 | | Vinyl Chloride | 0.5 | | <1 | <0.5 | <1 | ** *1 | <0.5 | <0.5 | <0.5 | * 1 | # 21 | <1 | 250 2 1 250 | <5 | <5 | 4 < 1 = 1 | ^{30,8} < 15° ⁴ | <1 | * < 1 ° | ે < 1º | <1 | <1 | | Total Halogenated Hydrod | carbons | | 13.5 | 8.3 | 2.7 | | 0.81 | 0.73 | | | 2.2 | 1.7 | | | | | | | | 1 44 - 1 44 | - / | | | Total Concentration of | VOCs | | 13.5 | 8.3 | 2.7 | | 0.81 | 0.73 | | | 2.2 | 1.7 | | | <u> </u> | | | | | | | İ | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit ⁼ Compound not included in analysis ^{* =} Analysis by BC Laboratories ^{† =} Analysis by California Laboratory Services ⁽D) = Duplicate sample ⁽S) = Split sample # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 #### (concentrations in µg/L) | | | 77-93-8 | (well is | on ann | ual samp | ling) | | | | | | | | | | | | | | | |----------------------------|---------|-----------------|----------
----------------------|-----------------|--|---------|------------------|---------|-----------------|------------|--------------------|----------------|---------------------|----------------------|--------------|-----------------|-------------------|--------------------|--------| | Constituent | MCL | Oct-93 | (D)* | Mar-94 | Jun-94 | Aug-94 | Nov-94* | Feb-95* | May-95* | Aug-95 | Nov-95 | Mar-96 | Jun-96 | Jul-96 | Dec-96 | Маг-97 | Aug-97 | Feb-98 | Aug-98 | Feb-99 | | Aromatic and Non-Halog | enated | i Hydroc | arbons | i | | | | | | | | | | | | | | | | | | Benzene | 1 | <1 | <0.5 | 集制器 | <1 | //<1 | <0.5 | <0.5 | <0.5 | ~ < 1 | 11 | <1 | <1 | <1 | <1 | <1 | S.<1 S | <1 | <1 | <1 | | n-Butylbenzene | | <1 | <0.5 | <155 | <1 | <1 | <0.5 | <0.5 | <0.5 | - | <2 | <2 | <2 | ं<1 ं | ::<1.:: | <1 | <1 | < 1 | <1 | <1 | | sec-Butylbenzene | | SE < 1 | <0.5 | | <1 | | <0.5 | <0.5 | <0.5 | <1. | <2 | <2 | <2 | <1 | <1 | ~ 1/- | <1° | ٠ <u>٠</u> | <1 | < 1 | | ter-Butylbenzene | | <1 | <0.5 | ##. <.1 ## | | #<1## | <0.5 | <0.5 | <0.5 | - < 1 | <2 | <2 | <2 | ~<1 | <1⊜ | <1:: | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <1 | <0.5 | 55 <1 F | <1 | isgi <il< b="">ein</il<> | <0.5 | <0.5 | <0.5 | <1 <i>∞</i> | <2 | <2 | <2 | <1 | igo K illigen | :: <1::: | <1 | <1 | <1 | <1 | | Isopropylbenzene | | <1 | <0.5 | | <1 | - (| <0.5 | <0.5 | <0.5 | <1 | <1 | <1: | <1 | <2 | <2 | <2 | <2 | v 2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | F-21% | <1 | 195 <1 /16. | <0.5 | <0.5 | <0.5 | <1 | <1 | ार 1री | <1 | <1" | <1 | <1 | 0.41 00 | 7 | 7 | <1 | | Naphthalene | | <1. | <0.5 | | <1 | **1 ** | <0.5 | <0.5 | <0.5 | <1 | <1 - | ∯ c 1⊕ | <1 | <2 | <2 | <2 | <2 | <2 | v 2 | :::<2 | | n-Propylbenzene | | <1 | <0.5 | 355 A 100 | 1 m | | <0.5 | <0.5 | <0.5 | 1 < 1 | <2 | <2 | <2 | <1 | <1 | ′′<1 | <1 | <1 | < 1 | · <1 | | Toluene | 150 | <1 | 1.1 | | 2 < 1 | 4119 | <0.5 | <0.5 | <0.5 | <1 | <1 | \$\$ 41 (8) | <1 | <1 | <1 | <1 | <1 | <1 | 1 | and <1 | | 1,2,4-Trichlorobenzene | 70 | ::< † | <0.5 | | | | <0.5 | <0.5 | <0.5 | <1 | ार्ग | # < 15E | े < 1 ः | <1 | <1 | <1 | <1 | <1 | ¥ | <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | (1) c | 114 | <1 | <0.5 | <0.5 | < 0.5 | <1 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | V 1 | <1 | | 1,3,5-Trimethylbenzene | | <1 | <0.5 | (4) | <1 | 414 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <1. | <1.0 | <1 | <1 | <1 | <1 | <1 | <1 | < 1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | v 2 | <2 | | Total Aromatic Hydrocarb | ons | | 1.1 | | <u></u> | | | | | | | | | | | | | | | | | Halogenated Non-Aroma | tic Hyd | drocarbo | ons | | | | | | : | | | | | | | | | | | | | Carbon Tetrachloride | 0.5 | 4 | <0.5 | 41 | 2 < 1 | <1 | <0.5 | <0.5 | <0.5 | <1 | <1** | <1 | 2014 THE | 11 <100 | <1 | <1 | <1 | <1 | SS <199 | <1 | | Chloroform | 100 | 73 | 1.4 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | د1 | <1 | <1 | <10 | <1 | <1 | <1 | <1 | <10 | <1 | | 1,1-Dichloroethane | 5 | <1 | 0.8 | <1 | <1 | <1 | 0.71 | 0.67 | <0.5 | <1 | | <1 | <1 | %<1 ∴ | <1 | <1 | <1 | <1 | 41/ | <1 | | 1,2-Dichloroethane | 0.5 | e 1 | <0.5 | <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <1 | د 1 د | 3<1 | 2 1 7 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | 1.4 | 2.1 | <1 | <1 | 0.91 | 1.0 | <0.5 | <1 | 441 | 3 (<1) | <1 | <1 | <1 | <1 | ~ < 1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | ~ 1 | <0.5 | ∞ <1 | <1 | <1 | <0.5 | <0.5 | <0.5 | <12. | | si <1 52 | <1: | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | <1 | <1 | < 1 | °.<0.5 | <0.5 | <0.5 | <190 | ₹1 | <.1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <1 | <0.5 | ાં દેવાં | <1 | < 7 € | <100 | √1 <1 *** | | · V | ~1 | es/<1% | <18 | <1 | <1 | <1 | 218 1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | ~1 | <0.5 | 30 <1 00 | ે <1 | /4<1 % | <0.5 | <0.5 | <0.5 | <1 | <1 | | ~ <1 | ## < 1 ## | <1 | <1 | <10 | <1 | <1 | <1 | | 1,1,1-Trichtoroethane | 200 | | <0.5 | 11/4 | ~ 1 | 1/ <1 | <0.5 | <0.5 | <0.5 | <1 | | K | <1 | <1 | <1 | <1 | 第41 第0 | ~1~ | P-<1 | <1 | | 1,1,2-Trichloroethane | 5 | - - (-) | <0.5 | 7721 | ## 21 ## | *** 1# | <0.5 | <0.5 | <0.5 | <1 | 441 | <1 | ~1 2 | <1 | <1 | <1: | <1 | # 1 * 1 | 29 <1 00 | <1 | | Trichloroethene | 5 | 41 | 0.9 | Mind Link | <1 | 144 | <0.5 | <0.5 | <0.5 | <1 | <1 | | <1 | *** | 21< | <1 | <1 | <1 | T | <1 | | Freon-113 | 1200 | <1 | | <1 | | **<1 | <0.5 | <0.5 | <0.5 | <5 | | <1 | <1 | **<1 | <1 | <1 | <1 | } <1 " | <1 | <1 | | Vinyl Chloride | 0.5 | 7 | <0.5 | 15 | *** | ************************************** | <0.5 | <0.5 | <0.5 | <1 | *** | <1 | <1 | <1 | <1 | <1 | <1 | ੀ≐<1 [™] | <1* | <1 | | Total Halogenated Hydrocar | bons | | 4.5 | 2.1 | | | 1.62 | 1.67 | | | | | | | | | | | | | | Total Concentration of VC |)Cs | | 5.6 | 2.1 | | | 1.62 | 1.67 | | | | | | | | | | <u> </u> | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis (D) = Duplicate sample ^{* =} Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 77-94-5 |----------------------------|---------|---------|---------------|-----------------------------|---------|----------|---------|---------------------|--------|--|-----------------------|--------------|-----------------|--------------------|---------------|--------------------|---------------------|---------------|---------|-----------------|---------------|--------------|--------| | Constituent | MCL | Jun-94* | (D)† | Sep-94 | Dec-94* | Feb-95* | May-95* | Sep-95 | Dec-95 | Mar-96 | ปมก-96 | Jul-96 | Dec-96 | Mar-97 | May-97 | Aug-97 | Nov-97 | Feb-98 | May-98* | Aug-98 | Nov-98 | Feb-99 | May-99 | | Aromatic and Non-Halog | genate | d Hydro | carbon | s | Benzene | 1 | <0.5 | <5 | <12 | <0.5 | <0.5 | <0.5 | <1 | 115 | - 1 - 1 · · · | 106 < 1 082 | <1 | <10 | <1 | 1 <1/5 | <1 | * <1 ° | <1 | <0.5 | <1 | ~1 | <1 | <1 | | n-Butylbenzene | | <0.5 | < 5 | * * 1 * | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | - <1 | <1 | < 1 | * 1 | <1 | ##Z1# | <1 | <0.5 | 7 < 10° | <1 | 1 <10 | <1 | | sec-Butylbenzene | | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | ~1 | <2 | <2 | <2 | <1 | 1 210 | <1 | <1 | <1 | % <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | <0.5 | <5 | | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | 4 1 | 形とは鈴 | <1 | <1 | <1 | <0.5 | ं<1 ं | <1 | <1 | <1 | | Ethylbenzene | 700 | < 0.5 | <5 | 21 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | ۲, | #<1# | <1 | <10 | <1 | <0.5 | <1 | <1 | <1 | < 1 | | Isopropyibenzene | | <0.5 | <5 | | <0.5 | <0.5 | <0.5 | <1 | <1: | <1 | 2<1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | v 2 | <2 | <2 | | p-Isopropyltoluene | | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | 7 | <1 | <1 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Naphthalene | | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | ं<2 | <2 | <2 | | n-Propylbenzene | | <0.5 | <5 | ec 🗸 📖 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | ∞ < 1 | <10.7 | <10 | (1) | ∜ <1.5 | < 1 | <0.5 | * < 1 | <1 | <1 | <1 | | Toluene | 150 | <0.5 | <5 | 44 (3 1 22 4 | <0.5 | <0.5 | <0.5 | < 15 | <1- | <1 | <1 | <1 | v1 | :::<1 | <1 | <1 | <1 | <i>-</i> '<1∵ | <0.5 | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | <1 | <1:- | <1. | e-1 | <1 | ં <1ં | <1 | **<1*** | S'<1 S | <1 | <1 | <0.5 | <1 | ∵ ⊵1 ∴ | <1 | <1 | | 1,2,4-Trimethylbenzene | | <0.5 | <5 | # < 1 5# | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <1 | <1 | # ~ 1 # 1 | <16 | <1 | <1 | <1 | <0.5 | <1 | ~1 | 1 < 1 | <1 | | 1,3,5-Trimethylbenzene | | <0.5 | <5 | ₹1 | <0.5 | <0.5 | <0.5 | | <2 | <2 | <2 | <1 | <1 | ## * | <1 | - 3 | 5 < 1 | <1 | <0.5 | ₹1° | <1 | 41 | <1 | | Xylenes, total | 1750 | <1.0 | <10 | # * | ¥ | 1 | Ÿ | 13 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <1 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocart | ons | _ | | | | Halogenated Non-Aroma | itic Hy | drocarb | ons | | | | | | | | | , | | | | | | | | | | | L | | Carbon Tetrachloride | 0.5 | <0.5 | <5 | <1.0 | 1.4 | <0.5 | <0.5 | <1 | <1: | <10 | <1 | <1: | <1 | <1 | <1.5 | .⁄ < 1 ∵ | ~ <1 · | ্ৰা | <0.5 | <1 | · <1 | €1. | < 1 | | Chloroform | 100 | <0.5 | <5 | <15 | 1.9 | <0.5 | <0.5 | ## < 1 in | <1 | <1 | <1 | × 1 | . <1 | < 1 | <1 | <1/ | F < 1 F | <1. | <0.5 | <1 | ~ t 1 | - <1 · | <1 | | 1,1-Dichloroethane | 5 | <0.5 | <5 | 1 < 1 // | <0.5 | <0.5 | <0.5 | <1 | 221 | ~1 25 | 1214 | < 1 | <1 | <1 | | <1 | 50 < 1 54 | - 1 | <0.5 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <0.5 | < 5 | ۲ | <0.5 | <0.5 | <0.5 | < 10 | <1 | <1 | 214 | ₹2 | <2 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <0.5 | ্<5 | \ 1 | 0.61 | <0.5 | <0.5 | 1121 | <1 | ************************************** | 1421 | <1 | 新名4餘 | -21 | <1 | <1 | <16 | : <1 · | <0.5 | 21 | ** < 1 · | <1 | <1 | | cis-1,2-Dichloroethene | 6 |
<0.5 | <5∶ | * \ | 1.6 | <0.5 | <0.5 | 20 2 (50 | <1 | <1 | <1 | ۲1 | <1 | <1 | F-24-3 | <1 | <1 | ° <1 | <0.5 | <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <0.5 | <5 | ુર1 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | <1. | <1 | <1 | <1 | - 15 | <1 | <10 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <0.5 | <5 | <1 | <1 | <1 | را > | <1 | 741 | <1 | ٠, | <1 | <1 | #21# | <1 | . <1° | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <0.5 | <5 | <16 | 36.0 | <0.5 | <0.5 | <1 | | 1.6 | 1 | 4.2 | <1 | <1 | <1 | <1 | · <1 | o < 1 | <0.5 | <1 | <1 | <1 | < 1 | | 1,1,1-Trichloroethane | 200 | <0.5 | < 5 | ~ | ۷O.5 | <0.5 | <0.5 | <1 | <1 | <1. | <1 | ⊹<1- | <1 | <1 | বা - | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | . <1 | < 1 | <1 | <1 | -: <1 | < 1 | <1 | <1 | 41 | 45 < 100 | <1 | <0.5 | <1 | <1.0 | <1 | < 1 | | Trichloroethene | 5 | <0.5 | < 5 | <1 | 13.0 | <0.5 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ्रा । | <10 | ×1 | <1 | <0.5 | ~ f | <1 | <1 | < 1 | | Freon-113 | 1200 | 1.2 | | 7 (| 2.4 | <0.5 | <0.5 | <5 | <1 | <1 | <1 | 1 <1/ | · <1 | <1 | | <1 | <1 | <1 | <0.5 | 21 | - 21 % | <1 | <1 | | Vinyl Chloride | 0.5 | <0.5 | <10 | 25 č 1 72 | <0.5 | <0.5 | <0.5 | - <100 | <1 | <198 | # 2 1 | < 1 | <1 | <1 | 41 | # < 1:0 | €1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Total Halogenated Hydrocar | rbons | 1.2 | | | 56.91 | | | | | 1.6 | | 4.2 | | | | | | | | | | | | | Total Concentration of VC | OCs | 1.2 | | | 56.91 | | | T | | 1.6 | | 4.2 | | | | | | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis ^{* =} Analysis by BC Laboratories ^{† =} Analysis by AEN ⁽D) = Duplicate sample # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | Aromatic and Non-Hologensted Hydrocarbons | | | 77-94-6 (v | vell is on | annual sa | ımpling) | | | | | | | | | | | | | | | |--|---------------------------|--------|------------|------------|--------------------|----------|-----------------|--------------|-------------------|-------------|----------------------|------------------|----------------|---------------------|--|----------------------|------------------|--------------------|---------|--------| | Benzene | Constituent | MCL | Jun-94° | (D)† | Sep-94 | Dec-94* | Feb-95* | May-95* | Aug-95 | Dec-95 | Mar-96 | Jun-96 | (D) | Jul-96 | Dec-96 | Mar-97 | Aug-97 | Feb-98 | Aug-98 | Маг-99 | | Pulylbanzane | Aromatic and Non-Halog | enated | d Hydroca | rbons | | | | | | · · · · | | | | | | | | | | | | See Butylbenzene | Benzene | 1 | <0.5 | <5 | <1 | <0.5 | <0,5 | <0.5 | <1 | <1/ | //<15 | 1 < 1 | <1 | <1 | <1 | <1 | <1 | <1 | 6 < 1.5 | <1 | | Info Butylbenzene | n-Butylbenzene | | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | 115 | <2 | <2 | <2 | <2 | <1.7 | <1 | <1 | <1 | <1 | <1 | <1 | | Ethylbenzene | sec-Butylbenzene | | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <2 | <1 | <1 | <1 | < 1 | <1 | < 1 | : <1 | | Sopropylbenzene | ter-Butylbenzene | | <0.5 | <5 | <1600 | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <2 | <1 | ٧1 | <1 | < 1 | <1 | <1 | <1 | | Pisopropyltoluene | Ethylbenzene | 700 | <0.5 | | <1 | <0.5 | <0.5 | | <1 | <2 | <2 | <2 | <2 | <1 | <1 | <1 | <1 | (1 | <1 | <1 | | Naphthalene | Isopropylbenzene | | | | | <0.5 | <0.5 | | - < 1-6 | / · <1 | 10 < 1 10 | <1 | W<1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | N-Propylebrane | p-Isopropyltoluene | | <0.5 | | - <1° | <0.5 | <0.5 | <0.5 | <110 | # <1 · | <1 | <1 | / <1 | <1 | <1 | <1 | <1 | ી⊲ <1 ાં | <1 | . <1 | | Tolluene 150 | Naphthalene | | | | ~1 | <0.5 | <0.5 | ************ | | | 48.4 4.1 67.8 | | 2141 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,2,4-Trichlorobenzene | n-Propylbenzene | | | | | <0.5 | | | | | € <2 | <2 | <2 | **<1 | ্ব1 | * <1 | ** < 1 · · | <1 | <1 | <1 | | 1.2,4-Trimethylbenzene | Toluene | 150 | | | 7 21 | <0.5 | <0.5 | | | | | | ## * | <1 | <1 | #E<1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylibenzene | 1,2,4-Trichlorobenzene | 70 | | | <1 | | <0.5 | | | <1 | | | F*<154 | 第<12 | ⁶⁷ <1□ ⁶ | <1 | <1 | <1 | <1 | <1 | | Xylenes, total 1750 <1.0 <1.0 <1.0 <1.1 <1.1 <1.1 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 <2.2 | 1,2,4-Trimethylbenzene | | <0.5 | | ## <1 ## | <0.5 | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <2 | <1 | <1 | - "< 1 = 1 | <1 | <1 | <1 | <1 | | Total Aromatic Hydrocarbons Halogenated Non-Aromatic Hydrocarbons Carbon Tetrachloride 0.5 <0.5 <5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 < | 1,3,5-Trimethylbenzene | | | <5 | <1 | | <0.5 | <0.5 | <1 | <2 | <2 | <2 | <2 | ! <1 | <1 | ~~1~ | <1 | <1 | <1 | <1 | | Halogenated Non-Aromatic Hydrocarbons | Xylenes, total | 1750 | <1.0 | <10 | <1 | <1 | <1 | | <۱. | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | < 2 | <2 | | Carbon Tetrachloride 0.5 <0.5 <5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | Total Aromatic Hydrocart | оль | | | | | | | | | | | • | | | | i | | | | | Chloroform | Halogenated Non-Aroma | tic Hy | drocarbon | s | | | | | ; | | | | | | | | | | | | | 1,1-Dichloroethane | Carbon Tetrachloride | 0.5 | <0.5 | <5 | <1 | <0.5 | < 0.5 | <0.5 | <1 | -11 | 745 CT 1115 | 1442104 | <1 | 77<1 | <1" | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | Chloraform | 100 | 0.5 | <5 | 4 <1 | <0.5 | <0.5 | <0.5 | <1 | 21 | 4 < 1 | 444 | <1 | 212 | ************************************** | 10×210× | <1 | <1 | <1 | <1 | | 1,1-Dichloroethene 6 < 0.5 < 5 < 1 < 0.5 < 5 < 1 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < | 1,1-Dichloroethane | 5 | 0.5 | <5 | | 0.7 | 0.61 | <0.5 | <1 | <1 | #21# | | <1 | 40<1 | :6.41 in | ¹ < 1 · · | <1 | <1 | < 1 | <1 | | Cis-1,2-Dichloroethene 6 <0.05 <5 <1 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 < | 1,2-Dichloroethane | 0.5 | <0.5 | <5 | 1 < 1 | <0.5 | <0.5 | <0.5 | <1 | <1 | <1 | 2 <1 | ~ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Irans-1,2-Dichloroethene | 1,1-Dichloroethene | 6 | <0.5 | ~5 | 11 | <0.5 | <0.5 | <0.5 | <1 | <1 | # < 1# | | <1 | <10 | <1 | <1 | <1 | <1 | <1 | <1 | | Methylene Chloride 5 <0.5 <5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td>cis-1,2-Dichloroethene</td> <td>6</td> <td><0.5</td> <td><5</td> <td><1</td> <td><0.5</td> <td><0.5</td> <td><0.5</td> <td><1</td> <td><1</td> <td>- <1</td> <td></td> <td>/ < li</td> <td><1</td> <td><1</td> <td>%1</td> <td><1</td> <td><1</td> <td><1</td> <td><1</td> | cis-1,2-Dichloroethene | 6 | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | <1 | <1 | - <1 | | / < li | <1 | <1 | %1 | <1 | <1 | <1 | <1 | | Tetrachloroethene 5 | trans-1,2-Dichloroethene | 10 | <0.5 | <5 | < 1 | <0.5 | ∴<0.5 | <0.5 | <1 | <1:- | | | < 1 | <1 | <1 | <1 | <1 | ar <1 m | 5 < 15 | <1 | | 1,1,1-Trichloroethane 200 <0.5 | Methylene Chloride | 5 | <0.5 | <5 | <1 | <1 | <1 | < 1 · · · | <1 | <1 | -: <1 -: | // to | ∴ ₹1 % | <1 | <15 | 25. < 10€ | < 14 | <1 | <1 | <1 | | 1,1,2-Trichloroethane 5 <0:5 | Tetrachloroethene | 5 | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | -1 de la 1 | # <166 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | % < 1870 | ି <1≘ | <1 | | Trichloroethene 5 <0.5 <5 <0.5 <0.5 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1< | 1,1,1-Trichloroethane | 200 | <0.5 | <5 | <1 | <0.5 | <0.5 | <0.5 | 2121 | ### 11M | 420 21 1845 | <1.5 | <10 | <1 | <1 | **/ * 1A: | <1 | <10 | <1 | <1 | | Freon-113 120 1.2 <1 <0.55 <0.55 <2.055 <2.055 <2.055 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <2.15 <th< td=""><td>1,1,2-Trichloroethane</td><td>5</td><td><0.5</td><td><5</td><td>213</td><td><0.5</td><td><0.5</td><td><0.5</td><td><1</td><td>1</td><td>3241</td><td></td><td><13</td><td>49-14</td><td><1</td><td><1</td><td>* <1*</td><td>~1=</td><td></td><td>inic15</td></th<> | 1,1,2-Trichloroethane | 5 | <0.5 | <5 | 213 | <0.5 | <0.5 | <0.5 | <1 | 1 | 3241 | | <13 | 49-14 | <1 | <1 | * <1 * | ~1 = | | inic15 | | Vinyl Chloride 0.5 <0.5 <1.0 <1.0 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 | Trichloroethene | 5 | <0.5 | <5 | < 12 | <0.5 | <0.5 | <0.5 | ~ 1 = | 24.51% · | 4444 T | ## < 1 | ## * | WE <1 | 18 18 18 18 18 18 18 18 18 18 18 18 18 1 | <1 | <15 | ं दा | <1 | <1 | | Total Halogenated Hydrocarbons 1.7 0.7 0.61 | Freon-113 | 1200 | 1.2 | | <1 | <0.5 | <0.5 | <0.5 | <5 ₫ | 38 1 | <1 | <1 | * <1 | ** <1 *** | <1 | <1 | <1 | <1 | <1 | ~1 | | | Vinyl Chloride | 0.5 | <0.5 | <10 | <1 | <0.5 | <0.5 | <0.5 | <1 | | 115 | <1 | <13 | 44/21/12 | © <1≈. | <1 | <1 | 141 | <1 | <1 | | 7.4.0 | Total Halogenated Hydroca | rbons | 1.7 | | | 0.7 | 0.61 | | | | | | | | | | | | | | | I DIGIT CONCENTRATION OF VOUS 1.7 0.7 0.61 | Total Concentration of VC | OCs | 1.7 | | T | 0.7 | 0.61 | | | | | | | T | I | | | | 1 | T | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit ⁼ Compound not included in analysis ^{* =} Analysis by BC Laboratories t = Analysis by AEN ⁽D) = Duplicate sample # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 75-96-20 | | | | | | | | | | | | | | | |----------------------------|---------|------------------|------------------|------------------------|---------------------------------------|--|-----------------|--------------------------|----------------------|---|--|-----------------------|--------------------|----------------------|---------------------|--------------------| | Constituent | MCL | Mar-97 | (D)* | Jun-97 | Aug-97 | Nov-97 | Feb-98 | May-98 | Sep-98 | Nov-98 | Feb-99 | May-99 | Sep-99 | Nov-99 | Mar-00 | May-00 | | Aromatic and Non-Haloge | nated H | ydrocarbon | s | | | | | | | | | | | | | | | Benzene | 1 | 33 < 1 | <0.5 | | | 340~156年 | < 10 | ## <1 | | | 94 41 56 | <1 | \$55 7 155 | 100 (1 996) | <1 | - <1 | | n-Butylbenzene | | | <0.5 | <1: | | 348 /1 348 | 41 1111 | # <1 | - 41 | -<1 | 54 /21 100 | 左连 <1 45號 | -%-<1° ○ | ~ ~1 | 1992 (1 996) | √ <1 | | sec-Butylbenzene | | * * * | <0.5 | <1 | 112 | | **** | | <1 | 49 < 1 B | | <1 | <1 | 5 C 21 | <1 | ∵<1 | | ter-Butylbenzene | | 1 | <0.5 | 11 | 774 | <1 | **** | **** | <1 | <1 | /1 | ## ** | ~~1 | *** <1 *** | <1 | 1 441 | | Ethylbenzene | 700 | <1 | <0.5 | | **** | <1 | - <1 I | <1 | | <1 | <1 | 24 1 24 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 □ | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | | | ₩ < 1 | 14 | | 21 | 2 < 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 | | # <15 à | <1 | <1 | <1 | · "<1 · · | | Naphthalene | | <2 ··· | <0.5 | <2 | <2 | ~ <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <1,- | <0.5 | <15 | ### < 1₩## | indi < lames | - 1 | en.e. <1 .,de | 41 < 1 | % <1 ∴ | €.5<1 ,%- | <1√ | ass <1 % | <1 | <1 | <1 | | Toluene | 150 | <1 | <0.5 | 5565 <1 1550 | ::::::::::::::::::::::::::::::::::::: | 1864 - 1 866 | | atropi <-1 com | ### <1 | -36 <1 | <1 | <1 | e::<1::: | # * (] | . iii <1⊓ | · <1 | | 1,2,4-Trichlorobenzene | 70 | <1 | <0.5 | - 18 m | ### <1 | | < ! | 4.44 | 45 < 1 8-4 | <1 | <1- | F-(<1-) | <1 | <1 * : | <1 | ⁻ <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | 59 ~ 1 0 E | \$\$#\$ <1 48\$# | | 2 < 1 | <1 | | 11 < 1 | ***** ******************************* | - 15 | <1 | F-101 | ``∜ <1' | <1 | | 1,3,5-Trimethylbenzene | | <1 | <0.5 | <1 | 2012/11/2012 | 14 4 17 15 | <1 | <1 | # 18 2 18 G | ~1 | - 1 | 三三人 1一位 | <1 | <1 | <1. | <1 | | Xylenes, total | 1750 | <2 | 75.4 1 .5 | <2 | <2 | <2 | <2 | <2 | € ć2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ns . | | | | | | | | | | | | | | | | | Halogenated Non-Aromati | c Hydro | carbons | | | | | , | | | | | | | | | • | | Carbon Tetrachloride | 0.5 | <1 | <0.5 | | - <1 | <1 | | ## (1 H# | <1 | <1 | 4 < 1 P | 《即 名1 形集 | Sevie 1. 50 | <1 | <1 | <1 | | Chloroform | 100 | <1 | 0.84 | 2.5 | 1.3 | 1.3 | 1.0 | 1.3 | <150 | / <1 | 604674 | <1 | <1 | #161 | <1 | :: <1 | | 1,1-Dichloroethane | 5 | <1 | <0.5 | 1.0 | | | <1 | Sees of Sees | | 112 | 1007-100 | ## *21 | 25215 | | < 1 1 4 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | 2 | ₹2 | <2 | <2 | 2 < 2 · · · | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | <0.5 | <1 | | < | <1 | <1 | 115 | <1 | ## < 100 | #151 | <1 | ** <1 **. | <1 | <1 | | cis-1,2-Dichloroethene | 6 | 2.0 | 3.2 | 6.3 | 2,7 | 2.8 | 1.7 | 2.6 | 2.2 | 2.3 | 1.8 | 1.9 | 2.7 | 3.0 | 2.6 | 2.9 | |
trans-1,2-Dichloroethene | 10 | <1 | <0.5 | <1 | % <1 | <1,- | <1 | 41 | | ## * | \$ (<1 | § | <1 | ं∂ <1 | ra <1 - | :: <1 · | | Methylene Chloride | 5 | c1 | <1 | - <1 | <1 | 4 distrib | <14.6 | 141 | | | 1 | <1 | <1 | <1 | ं <165 | <1 | | Tetrachloroethene | 5 | 2.4 | <0.5 | <1 | # <1 | ************************************** | <1 4 | ## <1 | 18 4 18 4 | F-12-12-12-12-12-12-12-12-12-12-12-12-12- | 100 | 2007 <1 305 | <1 | 11 c1 | 1.6 | <1 | | 1,1,1-Trichloroethane | 200 | <1 | <0.5 | 18 6 | ### <1 0## | 51545 | <100 | 41 | <1. | ## < † | # <1 // | <1 | <1 | 學<1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | | <0.5 | -15 | ##<1## | **** | <1 | F-119 | | 199 < 1 99 | 多一<1 | 75 21 50 | ং † ি | <1 | <1 | ^{27.7} <1 | | Trichloroethene | 5 | 6.0 | 5.0 | 12.0 | 7.3 | 8.6 | 7.3 | 9.3 | 5.8 | 5.3 | . 5.6 | 4.7 | 7.0 | 6.1 | 7.7 | 4.4 | | Freon-113 | 1200 | ~1 | <0.5 | <1 | المائح | | 27/21/18 | | <1 | <1 | 110 | 256415 | <1 | <1 | <1 | :::<1 | | Vinyl Chloride | 0.5 | <1 | <0.5 | <1 | <1 | <1 | 11 | | <1 | <1 | # <1 | <1 | <1 | 4 <1 | <1 | <1 | | Total Halogenated Hydroca | arbons | 10.4 | 9.04 | 21.8 | 11.3 | 12.7 | 10.0 | 13.2 | 8.0 | 7.6 | 7.4 | 6.6 | 9.7 | 9.1 | 11.9 | 7.3 | | Total Concentration of VOC | Cs | 10.4 | 9.04 | 21.8 | 11.3 | 12.7 | 10.0 | 13.2 | 8.0 | 7.6 | 7.4 | 6.6 | 9.7 | 9.1 | 11.9 | 7.3 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit ^{* =} Analysis by BC Laboratories ⁽D) = Duplicate sample # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 75-97-5 | | , | | | | | | | 75-97-6 | well is o | n annuai | sampling | } | | | | | |----------------------------|---------|--|------|-------------------|--|-----------------------|--------------------|--|------------------|---------------------|--|-----------------|---|----------------------|---------|--|---|----------------------|-------------| | Constituent | MCL | Aug-98 | (D)* | Nov-98 | Mar-99 | May-99 | Sep-99 | Nov-99 | Feb-00 | May-00 | Aug-97 | (D)* | Dec-97 | Feb-98 | May-98* | Aug-98 | Nov-9B | Mar-99 | May-99 | | Aromatic and Non-Haloge | nated F | lydrocarbo | ons | | | | | | | | | | | | | | | | 1 | | Benzene | 1 | 1 < 1 | <0.5 | <1 | // <1 🛊 | <1 | <1 | <1- | <1 | <1 | <1 | <0.5 | ***<1 :: | <1 | <0.5 | ্ব1 | <127 | <1 | <1 | | n-Butylbenzene | | <1 | <0.5 | <1 | <1 | | e<1.0 | <1 | <1 | <1 | 2.<1.0 | <0.5 | <1 | % < 1 | <0.5 | € to € 1.00 | <1 | · <1 | <1 | | sec-Bulylbenzene | ŀ | <1 | <0.5 | <1 | <1 | s. <1- | 24.<15.0a | 5-6 <1 | | -4-1 | ada <1 300 | <0.5 | # * 1 * 1 | 65 < 1 5 (| <0.5 | <1 | * *<1 | <1 | <1 | | ter-Butyibenzene | | <1 | <0.5 | <1 | <1 | | ## <1 | 41 × 10 × 10 | <1 | <1 | 649 c 1939 | <0.5 | 941 C | <1 | <0.5 | <1 | 2 4 1 1 | | ∞/<1 × | | Ethylbenzene | 700 | Sec 1 | <0.5 | (< 1 | <1 | ## <1 9#£ | <1 | 1 <1 | 0a < 1 | | 884188 | <0.5 | 388(<1 186 | 44 4 12 4 | <0.5 | ٧٦. | <1 | <1 | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | //<2: A | <2 | 314 42 16 | <2 | <2 | 4<2 | <2 | <0.5 | 1 <2 | ~~2 | <0.5 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | :::: <1 ;;;;; | | ## <1 % | ***<1 | 315 < 1 515 | re c Pin | ## ! ** | 4<1 | <10 | 545641945 | < 0.5 | # e iss | <100 | < 0.5 | M64194 | | <1 | <1 | | Naphthalene | | <2 | <0.5 | <2 | <2 | <2 | 2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | 54.C< 156.00 | <0.5 | /c1 | 1 | | | <1 | 111 | 2000 - 1 190 | 2004 | <0.5 | 19541 | <1 | < 0.5 | - 15° | - <1 ° | ~ <1 | <1 | | Toluene | 150 | au < 1 8 % | <0.5 | ## * | ## * 1 | 100 | ## <1 10 | <1 | <1 | 100 6110 | 1000001000 | <0.5 | 1000 N 1 010 | <110 | <0.5 | * <1 ** | 7-31-3 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <1 | <0.5 | <1 | ************************************** | 41 < 1 | 2012 | 1127 | 1972 | 0425-2 1 6-0 | POST THOSE | <0.5 | anir Zipasi | 35.72 | <0.5 | <1 | 5 6 2 1 1 1 1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <10.23 | <0.5 | | 111 | | | <1 | 1121 | 7.05°C 550 | #4507 To 1000 | <0.5 | likeleje o | <1 | <0.5 | 2100 | 0.831 | <1/ | <1 | | 1,3,5-Trimethylbenzene | | F < 1 | <0.5 | 41 | 944 4 168 | · <1 | 115 | - 1 | 21 | 24<1 | Holes I House | <0.5 | 15 61 | ## < 1 } | <0.5 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | <2 | <1 | <2 | <2 | 42 | <2 | <2 | <2 | <2 | 2 | <1 | <2 | <2 | <1 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | กร | | | | | | | | | | | | | | | | 2011.1.4 | | | | Halogenated Non-Aromati | c Hydro | carbons | | | | | | | | | | | | | | | | | I | | Carbon Tetrachloride | 0.5 | 1 | <0.5 | 44 KI | 9 < 1 | <1 | :::: 1 E | Sai e Bad | <1 | <1 | <1. | <0.5 | <1 | <1 | < 0.5 | <1 | ~ <100 | 10 < 1 (0) | <1 | | Chloroform | 100 | 201 < 1 0000 | <0.5 | ## <1 | ## <1 ### | 7 | <1 | | 100 e 1 | <1 | A < 1 | <0.5 | <1 | <1 | <0.5 | <1 | 100 21 60 | <1 | <1 | | 1,1-Dichloroethane | 5 | 1.4 | 1.8 | 1.8 | 3.5 | 2.7 | 2.2 | 2.2 | 2.2 | 2.7 | 3841 | <0.5 | :::::::::::::::::::::::::::::::::::::: | 2 <1 | <0.5 | <15 | ્રેલ ે (1) ફે | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | ×2 | -<2 | <2 | <2 | | ## 2 | <2 | <0.5 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | 1.5 | 2.2 | 1.9 | 2.1 | 3.5 | 2.9 | 3.0 | 3.1 | 4.0 | 100 et 100 | <0.5 | 210 | 9/4/19/ | <0.5 | ×6 <10 | <u> </u> | <u>ر د</u> | | | cis-1,2-Dichloroethene | 6 | 100 ~1 000 | <0.5 | ~~1 | - <1 C | 44 < 1 / 14 | 15 | 55 E < 1 755 | <1 | | 4921 | < 0.5 | ∴ <1 | - 1× | < 0.5 | 79. 21 | ंदा | - <155 | <1 | | trans-1,2-Dichloroethene | 10 | # < 1 1 H | <0.5 | <1 | (1 < 1 / h | ~1 | <1 | 2130 | ite et inie | omerce. | <1 | <0.5 | <1 | 1000 - 1 000 | <0.5 | 585 21 36 | <1 | 2721 | <1 | | Methylene Chloride | 5 | ~1 | <1 | <1 | *** ********************************* | 1992 ~ 1 1992 | e c1 | <1 | 1911 < 1111 | 444 2 1236 | Miles ne | 21 ¹ | **<1 | 75 < 1 5 5 | <10 | <1 | <t< td=""><td><1</td><td><1</td></t<> | <1 | <1 | | Tetrachloroethene | 5 | %: <1 | <0.5 | <1 | | | 20 -21 | <1 | # * | 2.022 | 887215.0T | <0.5 | - <i< td=""><td>77 - 19 -</td><td>< 0.5</td><td>**************************************</td><td><1</td><td><1:</td><td>- 1 × 1 · ·</td></i<> | 77 - 1 9 - | < 0.5 | ************************************** | <1 | <1: | - 1 × 1 · · | | 1,1,1-Trichloroethane | 200 | < 1 | <0.5 | <1 | <1 | (# < 1 = 1 | 4466 1 | <1 | ***** | izioletti paditi. | 100 and an | 0.68 | (1 | 100 × 100 × | <0.5 | <1 | | <1 | <1 | | 1,1,2-Trichloroethane | 5 | 51 <1 | <0.5 | <1 | | 12 × 1 | | ************************************** | ₩ <1 | 1>30 | Distriction of | <0.5 | 23 27 66 | . ct ≤ | <0.5 | <1 | <1 | <1 | <1 | | Trichloroethene | 5 | ************************************** | <0.5 | <1 ** | 74 ~ 1 1 | | <1 | | 1121 | | 8 19 2 1 12 2 | <0.5 | 61 | on/≥too | <0.5 | <12 | <1 | 50 < 1 % | <1. | | Freon-113 | 1200 |
************************************** | <0.5 | <1 | #14# | 1 | ## ** | 11211 | 41 | | ार्च । | <0.5 | 113 | # 21 | <0.5 | ** | ~1 | - - 1 | <1 | | Vinyl Chloride | 0.5 | <100 | <0.5 | <1 | ~~1 | <1 | 753 | 223 | # <1 | * 1 * 8 | | <0.5 | - 27 | - 1 | <0.5 | <1 | <1 | <1 | <1 | | Total Halogenated Hydroca | rbons | 2.9 | 4.0 | 3.7 | 5.6 | 6.2 | 5.1 | 5.2 | 5.3 | 6.7 | | 0.68 | | | | | . ", | e ja tve 🖦 popera. | | | Total Concentration of VOC | Cs | 2.9 | 4.0 | 3.7 | 5.6 | 6.2 | 5.1 | 5.2 | 5.3 | 6.7 | | 0.68 | | | | | | | i | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories (D) = Duplicate sample YES HOLD WERE BUILDING # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | n-Buythenzene | | | 75-97-7 | well is o | on annual | samplin | g) | | | | | 69-97-8 | | | | | | | | | | |---|---------------------------|----------|--|---------------------|------------------|--------------------|---------|--|---------------------|------------------------|--|----------------------------------|----------------------------|------|-----------------------|---------|-----------------------|---------------------|------------------------|-------------|--| | Benzane | Constituent | MCL | Jul-97 | (D)* | Dec-97 | Jan-98 | May-98* | Aug-98 | Nov-98 | Feb-99 | May-99 | Feb-98 | Jul-98 | (D)* | Nov-98 | Jan-99* | May-99 | Aug-99 | Nov-99 | Feb-00 | May-00 | | n-Buytherzene c1 c0,5 c1 c1 c0,5 c1 c1 c1 c1 c1 c1 c1 c | Aromatic and Non-Halod | enated | Hvdroca | arbons | | | | | | | | | | | | | | | | | | | Sep-Buylbenzeme | Benzene | 1 | - k 1 | <0.5 | <1 | <.1. | <0.5 | <1 | <1 | <1 | A <10a | <1.0 | <1 | <0.5 | < | <0.5 | ::<1· | <1 | <1 | <1 | <1 | | ter-Butylbenzene | n-Butylbenzene | | <1 | <0.5 | <1 | - (1 | <0.5 | 25 < 1 5 | -62. <1 | < 1 | 201<155c | <1 | <1 | <0.5 | <1 | <0.5 | <1 | <1 | <1 in | <1 | <1 | | Ethybenzene | sec-Butylbenzene | | <1 | <0.5 | <1 | <1 | <0.5 | ~1 | | | <1 | <1 | <1 | <0.5 | <1 | <0.5 | <1 | <1. | ~ <1 = | e | <1 | | Sepropylbenzene | ter-Butylbenzene | | ::<1:::::: | <0.5 | # <1 | <1 | <0.5 | <1 | <1 | . c 1 | 5% < 1 .⊕ | <1 | . <1 | <0.5 | <1 | <0.5 | <1 | <1 | :-:: <1 -::: | <1 | <1 | | p-isopropytiotuene | Ethylbenzene | 700 | . 6. < 1 . 6. | <0.5 | 496 | <1 | ~~~~ | | | | #2 <1 %n | 786 <1 38 | ilisii < 1 isoni | <0.5 | -46 < 1 500 | <0.5 | :<1 € | <1 | <1 | <1 | <1 | | Naphthalane | Isopropylbenzene | | ·::<2 | <0.5 | <2 | | <0.5 | | 2 | | ##<2% | #i≪2 :- | ## <1 | <0.5 | ং<2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | n-Propybenzene | p-Isopropyltoluene | <u> </u> | - | <0.5 | | | | | | | | 2001 < 1 000 | 2.1 | 2,8 | | <0.5 | 24 <1 0% | <1 | ং 1 | <1 | <1 | | Toluene 150 < 1 < 0.5 < 1 < 1 < 0.5 < 1 < 1 < 1 < 0.5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < | Naphthalene | | <2 | | <2 | | | | 22 | | <2 | <2 | | <0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | 1,2,4-Trichlorobenzene 70 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | n-Propylbenzene | | <1 | <0.5 | | - (1 | <0.5 | ## *1 99 | 869 <1 28 | <1: | <1 | 11 | 788 < 1 888 | <0.5 | ::-:<1:00° | ं <0.5 | <1 | <1 | <1: | <1 | <1 | | 1,2,4-Trimethylbenzene | Toluene | 150 | 110 | <0.5 | 200 <1 | 4 1 | <0.5 | 35.41 | W<15 | 444 | ##151### | <1 | 2019 | <0.5 | <1 | <0.5 | / *<1 ⊕ | 50 < 1 56 | | <1 | <1 | | 1,5-Trimethylbenzene <1 < 0.5 < 1 < 1 < 0.5 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < | 1,2,4-Trichlorobenzene | 70 | | <0.5 | **** | <1 | <0.5 | <1 | ## <1 ## | 1-7<1 | | <1.0 | 1 < 1 | <0.5 | 3/ <1 / | <0.5 | ं<1 ⊩ | <1 | ं<1 ः | <1 | 1 <1 = | | Xylenes, total 1750 <2 <1 <2 <2 <1 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 | 1,2,4-Trimethylbenzene | <u> </u> | | <0.5 | | F <100 | <0.5 | / <1 · | 198 | **** | ************************************** | 61 < 1 (2) | 40<170 | <0.5 | <1 | <0.5 | 140 21 400 | <1 | <1 | : <1° | <1 | | Total Aromatic Hydrocarbons | 1,3,5-Trimethylbenzene | <u> </u> | | <0.5 | | | <0.5 | SEE < 12.5 | | <1 | ***<1 **** | # < 1 !! | | <0.5 | <1 | <0.5 | <1 | <1 | ं ′≷1ंं | <1 | <1 | | Halogenated Non-Aromatic Hydrocarbons Carbon Tetrachloride | Xylenes, total | 1750 | <2 | *1 ** | <2 | <2 | | <2 | <2 | <2 | 10 < 2 :: | <2 | <2 | <0.5 | <2 | < 0.5 | <2 | <2 | <2 | <2 | <2 | | Carbon Tetrachloride | Total Aromatic Hydrocart | ons | | | | | | | | | | | 2.1 | 2.8 | | | | | | | | | Chloroform 100 <1 < 0.5 <1 < 1 < 0.5 <1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 | Halogenated Non-Aroma | itic Hy | drocarboi | ns | | | | | | | | | | 7 | | | | | | | | | 1,1-Dichloroethane | Carbon Tetrachloride | 0.5 | <1 | <0.5 | <1 | <170 | <0.5 | <1 ₁ | <1 | <1 | <1 | 1 < 1 | <1 | <0.5 | <1 | <0.5 | <1.5 | <1 | <1 | <1 | <1 | | 1,1-Dichloroethane | Chloroform | 100 | *** <1 *** | <0.5 | <1 | <1 | <0.5 | <1::: | 8<1 | M4<188 | <1 | #4<1 # | an < 146 | <0.5 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane 0.5 <2 | 1,1-Dichloroethane | 5 | - ct | <0.5 | | < 1 | <0:5 | × | | 7/41 | <1 | 144 < 1 144 | £ <1 | <0.5 | <1 | <0.5 | <1 | <1 | ··· <1 | 5 5 15 m | | | 1,1-Dichloroethene 6 <1 | 1,2-Dichloroethane | 0.5 | <295 | <0.5 | <2 | <2 | <0.5 | <2 | <2 | <2., | <2 | <2 | <2 | <0.5 | <2 | ** / | <2 | <2 | <2 | | | | cis-1,2-Dichloroethene 6 <1 <0.5 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td>1,1-Dichloroethene</td><td>6</td><td><1</td><td><0.5</td><td></td><td>ĕw₹1nka</td><td><0.5</td><td>ike<1##</td><td><1</td><td><1</td><td>(4<1%</td><td>#5.<1##</td><td><1</td><td><0.5</td><td>Partie Turky</td><td><0.5</td><td></td><td></td><td><1</td><td></td><td></td></t<> | 1,1-Dichloroethene | 6 | <1 | <0.5 | | ĕw ₹1 nka | <0.5 | ike <1 ## | <1 | <1 | (4 <1 % | #5. <1 ## | <1 | <0.5 | Partie Turky | <0.5 | | | <1 | | | | trans-1,2-Dichloroethene 1.0 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <t< td=""><td>cis-1,2-Dichloroethene</td><td>6</td><td>~1</td><td><0.5</td><td>~1</td><td>##Z16#</td><td><0.5</td><td>100<100</td><td><1</td><td><1</td><td><1</td><td>26.5</td><td>19.6</td><td>23.0</td><td>27.8</td><td>20.0</td><td>29.4</td><td>20.6</td><td>27.1</td><td></td><td></td></t<> | cis-1,2-Dichloroethene | 6 | ~1 | <0.5 | ~1 | ##Z16# | <0.5 | 100 <1 00 | <1 | <1 | <1 | 26.5 | 19.6 | 23.0 | 27.8 | 20.0 | 29.4 | 20.6 | 27.1 | | | | Methylene Chloride 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | | ## <1 ## | <0.5 | ## < 1 | 44/41 | 8516 < 1 888 | # č1 | ## <1 iii | <1 | <0.5 | \$61 41 90. | <0.5 | 55K155 | | | | | | Tetrachloroethene 5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | Methylene Chloride | 5 | 11/1 | 50° <1 0° | | 44614 | 11976 | | 414 | ## *1 ## | <1 | 1 > 6 | 2 <1 | <0.5 | 357<155 | <0.5 | 19
< 1 = 1 | <1. | 146-140 | 135 c 155 | | | 1.1,1-Trichloroethane 200 <1 | Tetrachloroethene | 5 | - 31 | <0.5 | 994 | ## < 1 | <0.5 | <1 | 416114 | <1 | | 13 21 3 3 3 3 3 3 3 3 3 3 | \$# ~ [##] | <0.5 | 20° < 1 | <0.5 | 2865 - 1 1.466 | <1 | ~ <1 | <1 | | | Trichloroethene 5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td>1,1,1-Trichloroethane</td> <td>200</td> <td>~1</td> <td><0.5</td> <td></td> <td>797<1</td> <td><0.5</td> <td>**************************************</td> <td>1987</td> <td><1</td> <td>12 < 1 (1)</td> <td><1</td> <td><1</td> <td><0.5</td> <td>\$9.4190</td> <td><0.5</td> <td><1</td> <td>3.2</td> <td>100 31 000</td> <td></td> <td> </td> | 1,1,1-Trichloroethane | 200 | ~1 | <0.5 | | 797 <1 | <0.5 | ************************************** | 1987 | <1 | 12 < 1 (1) | <1 | <1 | <0.5 | \$9. 41 90 | <0.5 | <1 | 3.2 | 100 31 000 | | | | Trichloroethene 5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <td>1,1,2-Trichloroethane</td> <td>5</td> <td><1</td> <td><0.5</td> <td>111</td> <td>1/4</td> <td><0.5</td> <td></td> <td>115</td> <td>1121</td> <td></td> <td>(F) (F)</td> <td>1></td> <td><0.5</td> <td><1</td> <td><0.5</td> <td>2000</td> <td>4431</td> <td><1</td> <td><1</td> <td><1</td> | 1,1,2-Trichloroethane | 5 | <1 | <0.5 | 111 | 1/4 | <0.5 | | 115 | 1121 | | (F) (F) | 1 > | <0.5 | <1 | <0.5 | 2000 | 4431 | <1 | <1 | <1 | | Freon-113 1200 <1 <0.5 <1 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | Trichloroethene | 5 | <1 | <0.5 | SE CHIEF | | <0.5 | 90 ~ 1 | 1 | <1 | <1 | <1 | <1 | <0.5 | <1 | <0.5 | S <1 | 71 | <1 | <1 | | | Vinyl Chloride 0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | Freon-113 | 1200 | ************************************** | <0.5 | 13 | <1 | <0.5 | UT < 1 | 21 | 111 | ************************************** | <1 | ## 1 | <0.5 | <1 | | <1 | दा | <1 | | | | Total Halogenated Hydrocarbons 26.5 19.6 23.0 27.8 20.0 29.4 23.8 27.1 20.8 21.0 | Vinyl Chloride | 0.5 | <1 | <0.5 | 15 | <1 | <0.5 | | 112 | <1 | areas and | <1 | 2 3 1 | <0.5 | <1 | | <1 | | <1 | <1 | | | Total Concentration of VOCs 26.5 21.7 25.8 27.8 20.0 29.4 23.8 27.1 20.8 21.0 | Total Halogenated Hydro | carbon | s | | | | | | | | | 26.5 | 19.6 | 23.0 | | | | | | 1 | | | | Total Concentration of VO | OCs | | | | | | | | | | 26.5 | 21.7 | 25.8 | 27.8 | 20.0 | 29.4 | 23.8 | 27.1 | 20.8 | 21.0 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit * = Analysis by BC Laboratories (D) = Duplicate sample # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 77-97-9 (w | vell is on | annual s | ampling) | | | | | | 77-97-11 | (well is | on annual | sampling | 1) | <u></u> - | | | |---------------------------|--------|------------------------|-------------|---|--|-------------------|--|--|--------------------|--|-------------------------|----------|----------------------|----------|--|-------------------|-----------------------|-------------------| | Constituent | MCL | Aug-97 | (D)* | Dec-97 | Feb-98 | May-98* | Aug-98 | Nov-98 | Mar-99 | May-99 | Jul-97 | (D)* | Dec-97 | May-98* | Aug-98 | Nov-98 | Mar-99 | May-99 | | Aromatic and Non-Halog | enated | d Hydrocar | bons | | | | | | | | | | | | | | | | | Benzene | 1 | | <0.5 | <1 | <1: | <0.5 | <150 | 1441 | | <1 | | <0.5 | <1 | <0.5 | 12 < 1 12 1 | <1 | ি ২1% | ं< 1 | | n-Butylbenzene | | 7 | <0.5 | | <1 | <0.5 | ** | <1 | <1 | 2005 1 200 | | <0.5 | <1 | <0.5 | | 300~10年 | <1 | .: <1 | | sec-Butylbenzene | | <1 | <0.5 | <1 | <1 | <0.5 | <1 | ব | <1 | <1 | <1 | <0.5 | ंदा | <0.5 | <1 | ে <1 🦠 | ा≼1 ि: | <1 | | ter-Butylbenzene | | | <0.5 | # < 1 | ~<1 | <0.5 | <1 | <1.5 | <1 | <1 | 44. | <0.5 | <1 | <0.5 | <1 | <1.5 | #:5 <1 | <1 | | Ethylbenzene | 700 | 1 41.00 | <0.5 | 344 < 1 443 | :::::<1::::: | <0.5 | m%<1595 | ce <155 | <1 | <1: | aa < 1 | <0.5 | ं < 1 | ·<0.5 | <1 | ::<1 :: | 1 | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | ·· <2 | <0.5 | <2 | - (-<2 iii | di⇔<2 / | <2 | <2.0 | <0.5 | <2 | <0.5 | <2.4 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | ## < 1944 | 1002 | <0.5 | | ************************************** | · /<1 | ## < 1 ## | <1 | <0.5 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Naphthalene | | // 2 | ₹0.5 | <2 | ## < 2 | <0.5 | 2 42 | - (2 iii) | <2 | <2 | <2 | <0.5 | <2 | <0.5 | ₹2 | <2 | <2 | <2 | | n-Propylbenzene | | <1 | <0.5 | | | <0.5 | | | 189219 | | *** | <0.5 | 115 | <0.5 | 100 ~ 1 100 | P=<197 | 201 | · <1 | | Toluene | 150 | | <0.5 | 4144 | | <0.5 | 7772 | | 11 | 189 24 945 | <1 | <0.5 | # <1 F | <0.5 | ************************************** | <12 | # 121 | <1 | | 1,2,4-Trichlorobenzene | 70 | | <0.5 | <1 | # * 1 | <0.5 | | | | | <1 | <0.5 | <1 | <0.5 | ~1 | 247 | 2 < 1 | ^{ार} <1 | | 1,2,4-Trimethylbenzene | | | <0.5 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | timetri quet | <0.5 | 1 27 | <1 | | | <1 | <0.5 | <1 | <0.5 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | - 1 | <0.5 | # < 1 | | <0.5 | <1 | | ## * | <1 | <1 | <0.5 | <1 | <0.5 | <1 | _ <1 | 1 <1 | <1 | | Xylenes, total | 1750 | <2 | (1) | <2 | <2 | **** | <2 | <2 | <2 | <2 | <2 | <1 | <2 | <1 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarb | ons | | | | | | | | | | | | | | | | | | | Halogenated Non-Aroma | tic Hy | drocarbons | s | | | | | : | | | | | | | | | | | | Carbon Tetrachloride | 0.5 | | <0.5 | <1 | *** ********************************* | <0.5 | **** | **** | | 1 < 1 | 1 3 | <0.5 | 201 < 1 50 | <0.5 | <100 | 16/41/9 | ## *1 | <1 | | Chloroform | 100 | | <0.5 | <1 | | <0.5 | 15° < 15° | 111/21/11 | | <1 | 105121100 | <0.5 | 1997 1 997 | <0.5 | <1 | 1141 | 186 <1 06 | 2.2 | | 1,1-Dichloroethane | 5 | | 0.67 | <1 | 1 1111 | <0.5 | | 1116 | | | | 0.51 | 4862128 | <0.5 | 198 | ~1 | 10 -1 10-1 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | 31 | - < t | 46<1 | <0.5 | <1 | <0.5 | <1 | <1 | #4 < 1# | :∴<1 | | cis-1,2-Dichloroethene | 6 | < 1 | <0.5 | <1 | | <0.5 | <1 | ~ <1 | <1 | <1 | *** 1/4 | <0.5 | <1 | <0.5 | <1 | <1. | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | <1 | <1 | <0.5 | - < 1.6 | < 1,5 | 1. | <1 | <15 | <0.5 | <1 | <0.5 | <1 | < 1.00 | 5 4 < 1 000 | s<1 | | Methylene Chloride | 5 | i. a:<1 | 44.<1.4 | <1 | <1 | -12- <1 | 666. <1 586 | 44 < 1 .84 | રેહો≮1 હો | <1 | 5:51. <1 1.79 | <1 | - <1 | <1 | - 144 | <1 | <1 | 1 <1 | | Tetrachloroethene | 5 | 0.63 <1 986€ | <0.5 | :::::: ::::::::::::::::::::::::::::::: | 485 < 1 856 | <0.5 | ************************************** | 1 × 1 1 | ## < 1## | 54 < 1 | <1 | <0.5 | <100 | <0.5 | .de. <1 | <1 | %°<1%′ | <1 | | 1,1,1-Trichloroethane | 200 | <1 | <0.5 | ## * 1 ## | THE C 1300 | <0.5 | 150 C 1 100 | 三三(1) | | ************************************** | 8884188 | <0.5 | ~ < 1." | <0.5 | <1 | <1 | ~1 · | <1 | | 1,1,2-Trichloroethane | 5 | | <0.5 | | # < 1 m | <0.5 | | | | 4. 4 . 1. 5. | <1 | <0.5 | <1: | <0.5 | <1 | <1: | Mi < 1 % | ## <1 - | | Trichloroethene | 5 | ~1 | <0.5 | <1 | -1 <1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 | <0.5 | | - K | 144 | 74 ~1 | | <0.5 | \$ < 1200 | < 0.5 | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | | <0.5 | | 112 | <0.5 | | <1 | | | | ₹0.5 | ## * 1 5 | <0.5 | 05 21 0 0 | | | <1 | | Vinyl Chloride | 0,5 | | <0.5 | 114 | <1 | <0.5 | 184 | <1 | | ## 21 | *1 | ₹0.5 | F <17 | <0.5 | <1 | <1 | (<1) | \ 1 | | Total Halogenated Hydro | carbon | s | 0.67 | | | | | | | | | 0.51 | | | | | | 2.2 | | Total Concentration of VC | OCs | | 0.67 | | | | | | | | | 0.51 | | | | | | 2.2 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit (D) = Duplicate sample ^{* =} Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results # Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 31-97-17 | (well is | оп аппиа | l sampling |) | | | | 31-97-18 | (well is c | on annual |
sampling) | | | | | |---------------------------|--------|-----------------------|----------|--|-----------------|--|-----------------|-----------------------|--|--|--------------------|--------------------|-----------------------|-----------------------|--------------------|-----------------|--| | Constituent | MCL | Oct-97 | (D)* | Nov-97 | May-98* | Aug-98 | Nov-98 | Feb-99 | May-99 | Oct-97 | (D)* | Nov-97 | May-98* | Aug-98 | Nov-98 | Jan-99 | Apr-99 | | Aromatic and Non-Halog | enate | d Hydroca | arbons | | | • | | | | | | | | | | | | | Benzene | 1 | V | <0.5 | <1 | <0.5 | <1 | 444 TEN | | 364 ~1 646 | | <0.5 | 1841 Per | <0.5 | 31 < 1 | <1 | <1 | <1 | | n-Butylbenzene | | | <0.5 | <1 | <0.5 | * 1 | # 2 188 | 153 | # < 1 5 | <1 | <0.5 | 5441 | <0.5 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | 11 ~ (| <0.5 | <1 | <0.5 | ₹1 | V | 7 | | *** ********************************* | <0.5 | 编字指述 | <0.5 | <1 | <1 | ~1 | <1 | | ter-Butylbenzene | | <1 | <0.5 | <1 | <0.5 | <1 | V | 7 | 1 <1 1 | # < 17# | <0.5 | 1412 | <0.5 | <1 | <1 | ~1 | <1 | | Ethylbenzene | 700 | 5<15 | <0.5 | <1 | <0.5 | <1 | 1 | <1 | <1 | 150 4.1 150 | <0.5 | - 1 | <0.5 | ~<1 | <1 | V 1 | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | ×0.5 | <2 | <2 | <2 | <2 | <2 · | <0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | *** <1 **** | <0.5 | <1 | <0.5 | <1 | 7 | <1 | <1 | ्रह्म इंदर्ग | <0.5 | <1.5 | <0.5 | <1 | <1 | <1 | <1 | | Naphthalene | | <2 | < 0.5 | <2 | .<0.5 | <2 | <2 | <2 | 4 < 2 de | ∂<2 | <0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <1 | <0.5 | < 177 | <0.5 | 1 | ~1 | | <1 == | <1 | <0.5 | <1 | <0.5 | <1 | ~ 1 | * | <1 | | Toluene | 150 | <1 | <0.5 | < 1=== | <0.5 | * * 1 | 1 | V | <100 | F-2159 | <0.5 | 4 | <0,5 | :::' <1 ::: | 1 < 1 | - < 1- | <1 | | 1,2,4-Trichlorobenzene | 70 | ~1 | <0.5 | 255.<15-54 | <0.5 | ** 1 | ₹ | ₹ | | | <0.5 | 2 2 1 2 1 B | <0.5 | | <1 | 21 < 12 | ************************************** | | 1,2,4-Trimethylbenzene | | *** <1 | <0.5 | | <0.5 | 1 1 | √ | | ************************************** | | <0.5 | ं<1 ○ | <0.5 | 99819 | <1/ | * *1 | <1 | | 1,3,5-Trimethylbenzene | | ~ ~ T | <0.5 | **** ******************************** | < 0.5 | ************************************** | 188 | | ## **1 | | <0.5 | #F <1 5% | <0.5 | <100 | <10 | <1 | <1 | | Xylenes, total | 1750 | v 2 | <1 | <2 | | <2 | <2 | 1 1<2 | <2 | <2 | 第3相關 | <2 | ^{क्रम} <1944 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarb | ons | | | | | | | | | | ··· | | | | | | | | Halogenated Non-Aroma | tic Hy | drocarboi | ns | | | | | | | | | | | | | | · | | Carbon Tetrachloride | 0.5 | #2 < d### | <0.5 | 7 ~ 1 6 6 6 | <0.5 | <1 | 1 100 | | <1 | <1 | <0.5 | <1 | <0.5 | ## *<1 ### | 10 <1 00 | <1 : | <1 | | Chloroform | 100 | 10210 | <0,5 | <100 | <0.5 | 90121954 | ~1 | | | %<1 | <0.5 | 94215 | <0.5 | 744 21 658 | ~ <1 | <1 | <1 | | 1,1-Dichloroethane | 5 | | <0.5 | <1.00 | <0.5 | 41 | Y | | \$4 21 | 51 × 1 | <0.5 | 2 1 × 1 | <0.5 | huy Palai | 444 | * < † | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <0.5 | <2 | <2 | 2 2 | <2 | <2 | <0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | <0.5 | * | <0.5 | <1: | | | | 1 | <0.5 | 21 | <0.5 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <1 | <0.5 | <1 | <0.5 | ** ** ** ** ** ** ** ** | 7 | | 1131 | <1 | <0.5 | | <0.5 | * <1 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | <10 | <0.5 | <1 | <0.5 | <1 | 24 <1 | 1 (2) | <1 | | <0.5 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | -<1 | <1 | <1 | <1 | <1 | | e 1 | <1 | <1 | < 1 | <1 | <1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | | <0.5 | 55/ < 1455 | <0.5 | 2014 - 1 88 - | | :::i <1 .:: | <1 | - <1 P | <0.5 | 5 < 1 × 1 | <0.5 | ::: < 1 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | 4 | <0.5 | <1 | <0.5 | 26. < 12. c | | ₹1 | 545<1000 | 41 | <0.5 | <122 | <0.5 | ं/र1ं | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | ## < 1 % | <0.5 | <1 | <0.5 | ::::::<1:::::: | **** | ## # 1### | :/< | ::::<1 | <0.5 | - < 1 | <0.5 | <1 | - (1) | <1 | <1 | | Trichloroethene | 5 | // c1/6 | <0.5 | <1 | <0.5 | v 1 | ## <1 | ## &1 ## | <1:0 | 400 61 404 | <0.5 | - <1 | <0.5 | <1 | - 21 - | <1 | <1 | | Freon-113 | 1200 | ~1 | <0.5 | *** <1 | <0.5 | 1 | 41 | 21 | | <1 | <0.5 | ž <1 | <0.5 | <1 | ~ <1 | **<1*** | ~ <1 | | Vinyl Chloride | 0.5 | 100 | <0.5 | ۷1 | <0.5 | *1 | 41 | 41 | 1461 | - e1 | <0.5 | 1421 | <0.5 | 4044 | 14 44 46 | -/*<1-** | ~1. | | Total Halogenated Hydrod | arbon | s | | | | | | | | | | | | | | | | | Total Concentration of VO |)Cs | | | | | | | | | | | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit ^{* =} Analysis by BC Laboratories ⁽D) = Duplicate sample ⁽G) = Grab sample ## Table L_ J-1 (Cont'd) ## **LBNL Groundwater Monitoring Well Results** ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 78-97-20 (we | ell is on and | nual samplin | g) | | | | | | |----------------------------|---------|---|---------------|---|----------------|---------|-------------------|---|--------------------------|--| | Constituent | MCL | Oct-97 | (D)* | Dec-97 | Feb-98 | May-98* | Aug-98 | Nov-98 | Feb-99 | May-99 | | Aromatic and Non-Haloger | nated H | lydrocarbons | ı | | | | | | | | | Benzene | 1 | a de la companya | <0.5 | <1*** | *1 | <0.5 | <1 | <1 | <1 | 4 × 1 | | n-Butylbenzene | | <1 | <0.5 | *11 | <1 | <0.5 | 21 | <1.5 | <1 | <104 | | sec-Butylbenzene | | <1 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1.5 | | ter-Butylbenzene | | | <0.5 | 36.<1 7.0 | <1 | <0.5 | arte (| <1 | 200 < 1 -0-7 | ::::: <1 ::::::::::::::::::::::::::::::: | | Ethylbenzene | 700 | | <0.5 | 第 8 < 1 单 | | <0.5 | 198 41 000 | | ces 7 <1 9 €68 | <i>ii,</i> ∞ <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | ∰ | <0.5 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | 1>0 | <1 | <0.5 | <1 | <1 | <1 | 18 2 1 8 9 | | Methyl tert-Butyl Ether | | <5 | | <5 | <5 | | <5 | <5 | <5 | <5 | | Naphthalene | | <2 | <0.5 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | | <0.5 | | <1 | <0.5 | <1 | 24 <1 - 1 | <1 | <1 | | Toluene | 150 | - Carrier | <0.5 | <1 | <1 | <0.5 | 0 - 21 · · · | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <1 | <0,5 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | | <0.5 | <1 | 2016 21 | <0.5 | <1 | ## <1 #### | <1. | <1 | | Xylenes, total | 1750 | <2 | <1 | <2 | <2 | <1 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | กร | | | | | | | | | | | Halogenated Non-Aromatic | c Hydro | ocarbons | | | | | | | | | | Carbon Tetrachloride | 0.5 | 7<1 | <0.5 | a cing | 21 | <0.5 | <1 | 282100 | <1 | 1 2 < 1 ≤ 1 | | Chloroform | 100 | <1 | <0.5 | <1 | 21 | <0.5 | <1 | F <100 | <1 | <1 | | 1,1-Dichloroethane | 5 | <1 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | < 0.5 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | :::::<1:::::::::::::::::::::::::::::: | <0.5 | **** <1 % | · <1 | <0.5 | 21 | F-4<1 | <1: | 6 <1 | | cis-1,2-Dichloroethene | 6 | | <0.5 | 2112 | <1 | <0.5 | | asis Zri al Ca | <1 | S <15 | | trans-1,2-Dichloroethene | 10 | 131 | <0.5 | <1 | 1 4 2 1 | <0.5 | <1 | 300 < 100 to | <1 | 3 × 1 × 1 | | Methylene Chloride | 5 | <1 | <1 | | <1 | <1 | <1 | <1 | <1 | ∜ (<1 | | Tetrachloroethene | 5 | | <0.5 | <1 | <1 | 0.51 | <1 | <155 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <1/4 | 0.86 | 98053 <1 0555 | <1 | 0.86 | (1 | ************************************** | <1 | (<1 | | 1,1,2-Trichloroethane | 5 | <1 | <0.5 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <1 | < 0.5 | - 1 | 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | <1 | <1 | | Trichloroethene | 5 | <1 | 1.1 | <1 | <1 | 2.1 | 1.3 | <1 | 1.9 | 2.6 | | Freon-113 | 1200 | <1 | < 0.5 | <1 | <1 | <0.5 | <1 | <1 | 2.01<1 | <1 | | Vinyl Chloride | 0.5 | <1 | <0.5 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | | Total Halogenated Hydroca | rbons | | 1.96 | | | 3.47 | 1.3 | | 1.9 | 2.6 | | Total Concentration of VOC | | | 1.96 | | Γ | 3.47 | 1.3 | <u>-</u> | 1.9 | 2.6 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis (D) = Duplicate sample ^{* =} Analysis by BC Laboratories # Table C4.3-1 (Cont'd) LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 69-97-21 (we | ll is on annu | al sampling) | | | | | | |----------------------------|---------|--|--
--|-----------------|--------------------------|----------------|-------------------|---------------------| | Constituent | MCL | Mar-98 | Mar-98* | Jun-98 | Aug-98 | Nov-98 | Feb-99 | May-99 | Feb-00 | | Aromatic and Non-Haloge | nated H | ydrocarbons | | | | | | | | | Benzene | 1 | ~1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | <1 | <0.5 | <1 | | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | - in <1 : 45 sy | <0.5 | - 1 14 - 5 | <1 | <1 | <1 | <1 | <1 | | ter-Butylbenzene | | 5 6 6 1 5 5 5 5 | <0.5 | 3-3 -3 1 | - Kal | <1 | <1 | <1 | * * * † | | Ethylbenzene | 700 | <1 | <0.5 | <1 | 31 | <1 | <1 | **** | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | ļ | <1 | <0.5 | <1 | <1 | in <1 - 1 | <1 | <1 | 788 <1 14 | | Naphthalene | Ï | <2 | <0.5 | ************************************** | <2 | <2 | <2 | <2 | ~~~~~ | | n-Propylbenzene | | ************************************** | <0.5 | 100000 | est let 🔄 en we | 11761 | alada (1 55 c | <1 | <1 | | Toluene | 150 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <1 | <0.5 | | 1431 | a < 1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | | <0.5 ∮ | 4 6 6 1 2 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | | 10000 | ####<1 ** | <1 | <1 | | 1,3,5-Trimethylbenzene | | | < 0.5 | | | | 115-21 | 218 | | | Xylenes, total | 1750 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ns | | | | | | | | | | Halogenated Non-Aromati | c Hydro | carbons | 111 | ., | | | | | | | Carbon Tetrachloride | 0.5 | <1 | <0.5 | <1 | . | 1>1 | <1 | < 1 | <1 | | Chloroform | 100 | 15.0m. < 1 .000 | <0.5 | <1 | -5 4<1 | <1 | 5 4 1 6 | ** ₹1# · · | 31 | | 1,1-Dichloroethane | 5 | <1 | <0.5 | **** | | ************************ | 21 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <2 | i <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | <0.5 | 7 | <1 | <1 | <1 | <1 | 21 | | cis-1,2-Dichloroethene | 6 | <1 | <0.5 | ~1 | | <1 | <1 | <1 | * 15 | | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | | 944 | | § <1 | <1 | ~ | | Methylene Chloride | 5 | 15 | ************************************** | 1 | | 21 | 4 | <1 | 4644183 | | Tetrachloroethene | 5 | <1 | <0.5 | / | 1 × 1 | <1 | <1 | <1 | 1 | | 1,1,1-Trichloroethane | 200 | <1 | <0.5 | <1 | <1 | <1 | <1 | - c < 1 | * | | 1,1,2-Trichloroethane | 5 | <1 | <0.5 | 1 | 1 | 20121 | 4 <1 | <1 | | | Trichloroethene | 5 | <1 | <0.5 | (1) | | <1 | <1 | <1 | 41 ST | | Freon-113 | 1200 | <1 | <0.5 | 7 | <1 | <1 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <1 | < 0.5 | <1 | <1 | <1 | <1 | <1 | - <1 - 5 | | Total Halogenated Hydroca | irbons | | | | | | | | | | Total Concentration of VOC | | | | | | | | <u> </u> | | | . J.C. Johnson and VOC | | | | | | L | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ^{* =} Analysis by BC Laboratories # LBNL Groundwater Monitoring Well Results ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 75-98-14 | | | | | 75-98-15 | | | | | | | |---------------------------|---------|-----------------|---|--|--|---|------------------|-------|-----------------|----------------|------------------|----------------------|---------------------| | Constituent | MCL | Jul-99 | (D)* | Nov-99 | Feb-00 | May-00 | Mar-99 | (D)* | Apr-99 | Aug-99 | Nov-99 | Feb-00 | May-00 | | Aromatic and Non-Haloge | nated H | ydrocarbons | 3 | | | | | | , | | | | | | Вепzепе | 1 | johe < 1 milier | <0.5 | - 4 < 1 | <1 | <1 | # < 1 P/P | <0.5 | | <1 | 2 <1 | <1 | <1 | | n-Butylbenzene | | 64 F < 1 mm | <0.5 | <1 | | <1 | <1 | <0.5 | <1 | <1 | 111 | <1 | <1 | | sec-Butylbenzene | | <1 | <0.5 | <1 | <1 | <1 | | <0.5 | <1 | <1 | <1.2 | - <1 · | <1 | | ter-Butylbenzene | | <1 | <0.5 | 1000 2 1 0000 | <1 | **** | | <0.5 | <12 | ર1 | <1 | 第二<1 0.00 | <1 | | Ethylbenzene | 700 | <1 | <0.5 | - 1 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | : | <2 | <0.5 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | 11.20 | <1 | <1 | i <1 | <0.5 | <1 | <1 | s <1 | <1 | <1 | | Naphthalene | | <2 | <0.5 | <2 | <2 | <2 | <21.0 | <0.5 | ## <2 | <2 | 64 < 2 | <2 | <2 | | n-Propylbenzene | | | <0.5 | 100 < 1 00 E | <1 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 644 <1022 | <0.5 | 21 | া বা | <1 | <10 | in <1 | | Toluene | 150 | <1 | <0.5 | 1 | - 1 Z 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <1 | - c1 | < 0.5 | Kr24-512 | <1 | 1 21 V | 1989 4/1 8838 | <1 | | 1,2,4-Trichlorobenzene | 70 | ~1 | <0.5 | <1 | 1121 | <1 | | <0.5 | | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | <1 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <1 | <0.5 | <1 | <1 | <1 | <1 | <0.5 | - < - | **** < 1.5 % | <1 | <1 | < 1 | | Xylenes, total | 1750 | <2 | <u>, , , , , , , , , , , , , , , , , , , </u> | <2 | <2 | <2 | <2 | | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ns | | | | | | | 1 | | | | | | | Halogenated Non-Aromati | c Hydro | carbons | | | | | | | | | | | | | Carbon Tetrachloride | 0.5 | <1 | <0.5 | <1 | <1 | <1 | 2 | <0.5 | 1 | <1 | 55 < 1 = | <1 | <1 | | Chloroform | 100 | 5.4 | 4.9 | 1.3 | - 21 × 1 | . <1 | <10. | 0.78 | | 4 m < 1 m | <1 | - < t | <1 | | 1,1-Dichloroethane | 5 | <1 | 0.76 | <1. | <1: | 144.4 | in the <15 looks | <0.5 | SA CIO | fillion< 1-000 | | 3866<1 | ##es <1 1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | <0.5 | 1 <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | 3.9 | 3.9 | 4.0 | 2.1 | 2.0 | | <0.5 | # 21 5 | 145 | 265 ~1 1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <1 | <0.5 | 1 | <1 | <1 | | < 0.5 | F <1 | 1 21 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | | <0.5 | | | <1 | | <0.5 | 1 2 1 | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <1 | <1 | | 15 21 | ্ব ব | <1 | <1 | ₹<1 | | <1 | <1 | <1 | | Tetrachloroethene | 5 | < 1 , | <0.5 | | # < 1 | ्र दो | <1 | <0.5 | d <1 | <1 | <1 | . √ <1 | <1 | | 1,1,1-Trichloroethane | 200 | <1 | 1.3 | <1 | a | . | 6186 | <0.5 | - <1 | <1.00 | <1 | <1 | artiri <1 | | 1,1,2-Trichloroethane | 5 | <1 | <0.5 | <1 | 1111 | ~1 | 1 d < 1 d d | <0.5 | 選 く1 | <1 | <1 | ***:<1 | <1: | | Trichloroethene | 5 | <1 | <0.5 | ### 21 1000 | <1 | ব | | <0.5 | ₩ 61 | <1 | 7/2 <1 | <1 | <1 | | Freon-113 | 1200 | 12 21 | <0.5 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | *** ********************************* | <1 | | <0.5 | - ∃ €1 | 11 | 21 25 | <1 | <1 | | Vinyl Chloride | 0.5 | * 1 | <0.5 | <1 | <1 | 1 3 | \$ 21 E1 | <0.5 | | 11 | <1 | <1 | 11 < 10 0 | | Total Halogenated Hydroca | arbons | 9.3 | 10.86 | 5.3 | 2.1 | 2.0 | | 0.78 | | | <u> </u> | | | | Total Concentration of VO | Os | 9.3 | 10.86 | 5.3 | 2.1 | 2.0 | | 0.78 | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ^{* =} Analysis by BC Laboratories ⁽D) = Duplicate sample # **LBNL Groundwater Monitoring Well Results** ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | Constituent Aromatic and Non-Halogenate | MCL. | Nov-98 (G) | 1 | | | | | | |---|--------|--|--------------|---|--------|---|------------------------------|--| | Aromatic and Non-Halogenate | | 1404-90 (Q) | Jul-99 | Jul-99 | (D)* | Nov-99 | Feb-00 | May-00 | | | d Hyc | frocarbons | | * | | | , | | | Benzene | 1 | 4 | <1 | <1 | <0.5 | <1 | | <1000 | | n-Butylbenzene | | <1 | <1 | Maria (2) (1) (1) (1) | * <0.5 | (14,5 th | <1 | | | sec-Butylbenzene | | *1 | <1 | * * * * * * * * | <0.5 | <1 | <1. | <1 | | ter-Butylbenzene | | <1 | <1 | e et e | <0.5 | <1 | merikali dala | <1 | | Ethylbenzene | 700 | :::::::::::::::::::::::::::::::::::::: | <1 | in mental (1 et al. a) | <0.5 | 40 × 10 × 10 | nicologis <1 in an is | 66 (1 | | Isopropylbenzene | | <2 | <2 | | <0.5 | <2 | <2 | <2 | | p-Isopropyltoluene | | *** ********************************* | | 1442164 | <0.5 | <1 | <1 | ************************************** | | Naphthalene | | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | | n-Propylbenzene | | <1 | <1 | <1 | <0.5 | <1 | <1 | | | Toluene | 150 | <1 | <1 | <1 | < 0.5 | <1 | <1 | 18000 A 61 180 Hz | | 1,2,4-Trichlorobenzene | 70 | <1 | <1 | <1 | < 0.5 | <1 | | / <1 | | 1,2,4-Trimethylbenzene | | s = <1 i.i. | | | <0.5 | 4.00 <1 | 7.44.4 4.1 | 2 2 6 8 < 1 2 2 4 6 6 | | 1,3,5-Trimethylbenzene | | (1) the c<1 (1) the co | <1 | ****** | <0.5 | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | - <1 | 2004 <1 007 | | Xylenes, total 1 | 1750 | **** <2 | <2 | <2 | ∛ | <2 | <2 | <2 | | Total Aromatic Hydrocarbons | | | | | | | | | | Halogenated Non-Aromatic Hy | /droca | arbons | | | | | | | | Carbon Tetrachloride | 0.5 | | <1 | 7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <0.5 | <1 | 201.00 <1 0.568 | | | Chloroform | 100 | 41 | <1 | | < 0.5 | D20114 - 12 0 0 0 0 | 0400 ~ 1 04000 | 1.000 ~ < 1 .000 . | | 1,1-Dichloroethane | 5 | <1 | - 11 | 3434 <144 | <0.5 | | <1 | ###################################### | | 1,2-Dichloroethane | 0.5 | <2 | <2 | 22 × 2 | <0.5 | <2 | <2 | 22 22 | | 1,1-Dichloroethene | 6 | <1 | <1
| <1 | <0.5 | <1 | <1 | ************************************** | | cis-1,2-Dichloroethene | 6 | <1 | <1 | <1 | < 0.5 | <1 | | 1 × 1 × 1 | | trans-1,2-Dichloroethene | 10 | <1 | <1 | <1 | <0.5 | <1 | <1 | 44 1 4 1 4 0 10 | | Methylene Chloride | 5 | <1.5 <1 .5 € | <1 | 5 1 × 1 | <1 | <1 | <1 | <1 | | Tetrachloroethene | 5 | <1.55 | <1 | - 55 <1 | <0.5 | <1 | <1 | &**** *1 0***** | | 1,1,1-Trichloroethane | 200 | | <1 | <1 | <0.5 | !<1 | EB 145.0(人) (13.11年度) | 1 | | 1,1,2-Trichloroethane | 5 | ******* | 21 × 10 × 10 | | < 0.5 | ~1 | 315607 < 1 6 3 4 4 | - 11 (21) | | Trichloroethene | 5 | // <1 | - 1 | 1 | < 0.5 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 1444 C | <1 | | Freon-113 | 1200 | | <1 | | < 0.5 | <1 | <1 | 21 | | Vinyl Chloride | 0.5 | <1 | ≤1 | 7 <1 | <0.5 | | <1 | *15 F | | Total Halogenated Hydrocarbor | ns | | | | | | | | | Total Concentration of VOCs | | l | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted * = Analysis by BC Laboratories = Less than Quantitation Limit (D) = Duplicate sample (G) = Grab sample # LBNL Groundwater Monitoring Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 76-98-21 | | | | | | 76-98-22 | | | | | | | |---------------------------|---------|-------------------|-------|---|--------------|------------------|--|-------------------------|--------------------|----------------------|-------------------------|--------------------------|----------------------------|-----------------------| | Constituent | MCL | Jul-99 | (D)* | Sep-99 | Nov-99 | Mar-00 | May-00 | Jan-99 | (D)* | May-99# | Sep-99 | Nov-99 | Feb-00 | May-00 | | Aromatic and Non-Haloge | nated | Hydrocarbo | ns | | | | | | | | | | | | | Benzene | 1 | <1 | <0.5 | <1 | <1 | <1 | | 7784 | <0.5 | <1. | <1 | <1 | <1 | <1 | | n-Butylbenzene | | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | <1 | <0.5 | <1 | <1 | <1 | 1 | Fig. <1 25 ft | <0.5 | <1 | <1 | <1 | 5-11 < 1 | <1 | | ter-Butylbenzene | | r::/<1 | <0.5 | - 1 m | <1 | <1 | - 10 < 1 | Sexa<1-6 | <0.5 | 440 <1 000 | **** | <1 | 1945 <1 979 | <1 | | Ethylbenzene | 700 | <1 | <0.5 | <1 | <1 | <1 | <1 | | <0.5 | 11/4 | - c1 | <1 | 1 21 | ○ <1 · | | Isopropylbenzene | | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | <0.5 | 22<1 | <1 | ≨ | <1 | <1 | | Methyl tert-Butyl Ether | | <5 | <0.5 | <5 | <5 | <5 | < 5 | <5 | <0.5 | <5 | <5 | <5 | <5 | <5 | | Naphthalene | | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <1 | <0.5 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | 41 | <1 | <1 | 350 < 1000 | <0.5 | <1 | ## <1 6% | 4174100 | 79-12-1-2-4 | <1 | | Toluene | 150 | <1 | <0.5 | <1 | <1 | <1 | 1 21 | 476111 | <0.5 | - 1 | | <1 | 70 < 1 50 | <1 | | 1,2,4-Trichlorobenzene | 70 | 7 % - E 40 % - S | <0.5 | <1 | <1 | <1 | <1 | ### * | <0.5 | 4 181 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | <1 | <1 | <1 | <1 | 11/21/15 | <0.5 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <1 | < 0.5 | <1 | <1 | <1 | <1 | 97 es <1 € (1 | <0.5 | <1 | <1 | <1.5 | - 21 · | <1 | | Xylenes, total | 1750 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | % 4 <1 = | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbo | ons | | | | | : | | | | | | | | | | Halogenated Non-Aromat | ic Hydi | ocarbons | | | | | | | | | | | | | | Carbon Tetrachloride | 0.5 | ** | < 0.5 | <1 | <1 | <1 | <1 | <1. | <0.5 | ## <1 9# | 美女子 | granik a j e sese | 5 a 6/ < 1 % a 6 | <1 | | Chloroform | 100 | <1 | <0.5 | 1.4 | <1 | <1 9 | ## # | ## <1 = 1 | <0.5 | 14421 | | 41000 | 545 <1 030 | FF < 1 | | 1,1-Dichloroethane | 5 | <1 | <0.5 | <1 | <1 | V 1 | ******* | | <0.5 | <1 | 排版<1 990 | (1) | 3-20- 41 0-5-5 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | <0.5 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | <0.5 | <1 | <1 | | <1 | <1 | <0.5 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | | 1.2 | <1 | 1.2 | <1 | 2.9 | 1000 | 0.83 | 12,65<1,6,75 | <1 | <1 | 1.9 | 1.7 | | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | <1 | <1 | ** <1* ** | 416 × 166 | 307<100 | <0.5 | ## *** | 756 < 1 000 | ा देव ः | <1 | <1 | | Methylene Chloride | 5 | <1 | <1 | 1 | 1 2 2 | <1 | ~1 | <1 | <1 | 21°00 | 100 21 065 | ~ 15 | <1 | <1" | | Tetrachloroethene | 5 | <1 | <0.5 | 1 | 1 1 1 | <1 | <1 | <1 | <0.5 | <1 | 2015 < 1 0 40 | 41 | 9 <1 × | <1 | | 1,1,1-Trichloroethane | 200 | <1 | <0.5 | <1 | <1 | *** | <1 | <1 | <0.5 | <1 | | ્રના 🗼 | 1 21 1 2 | <1 | | 1,1,2-Trichloroethane | 5 | <1 | <0.5 | <1 | <1 | <1 | <1 | ja 6<10 4 | <0.5 | <1 | <1 | ~ (1) | E-15-0 | # < 1 | | Trichloroethene | 5 | 12.5 | 11.0 | 15.0 | 13.8 | 11.4 | 21.5 | # <1 0 M | <0.5 | 300 <1 30 | | 21 | %165 | <1 | | Freon-113 | 1200 | <1 | <0.5 | - 1 | <1 | <1 | ## *1 | ## * | <0.5 | 19 Set 4 19 | % ~ 1 | | 1212 | | | Vinyl Chloride | 0.5 | 358 21 503 | <0.5 | 1414 | <1 | <1 | ************************************** | 7978 < 128.00 | <0.5 | F (41) | <1 | 1 21 2 | <1 | 14.64 <1 00 | | Total Halogenated Hydroc | arbons | 12.5 | 12,2 | 16.4 | 15.0 | 11.4 | 24.4 | | 0.83 | | | | 1.9 | 1.7 | | Total Concentration of VO | Cs | 12.5 | 12,2 | 16.4 | 15.0 | 11.4 | 24,4 | | 0.83 | | | | 1.9 | 1.7 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ⁼ Less than Quantitation Limit # = Sample was analyzed after holding time expired ⁽D) = Duplicate sample ^{* =} Analysis by BC Laboratories ## **LBNL Groundwater Monitoring Well Results** Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 75-99-4 | | | | | 75-99-6 | | | |----------------------------|---------|-----------------------------|-------|------------------------------|---------------|----------------------------|--|-------|--| | Constituent | MCL | Oct-99 | (D)* | Nov-99 | Feb-00 | May-00 | Feb-00 | (D)* | May-00 | | Aromatic and Non-Halogen | ated Hy | drocarbons | | | | | | | | | Benzene | 1 | | <0.5 | <1 | s < 1 | <1 | <1 | <0.5 | <1 | | n-Butylbenzene | | alardi < l argani | <0.5 | | 1 < 1 | 40:50 <1 20:535 | p. 1441 | <0.5 | <1 | | sec-Butylbenzene | | ~ 1000 | <0.5 | <1 | 21 | <1 | <1 | <0.5 | Teles < 1 1 | | ter-Butylbenzene | | <1 | <0.5 | <1 | <1 | 75 9/ 2 10 67 | <1 | < 0.5 | <1 | | Ethylbenzene | 700 | <1 | <0.5 | <1 | 41 | <1 | <1 | <0.5 | <1 | | Isopropylbenzene | | <2 | <0.5 | <2 | <2 | <2 | <2 | <0.5 | <2 | | p-lsopropyltoluene | | // // | <0.5 | <1 | 12 41 | <1 | <1 | <0.5 | ************************************** | | Naphthalene | | <2 | <0.5 | <2 | <2 | <2 | <2 | <0.5 | <2 | | n-Propylbenzene | | 21 | <0.5 | <1 | <1 | <1 | <1 | <0.5 | 21 | | Toluene | 150 | <1: | <0.5 | <1 | | 61 61 | (1 <1 = 1 | <0.5 | <1 | | 1,2,4-Trichlorobenzene | 70 | · 2 < 1 | <0.5 | 41 41 | 1 21 6 | <1 | <1 | < 0.5 | <1 | | 1,2,4-Trimethylbenzene | | <1 | <0.5 | <1 | 21 | <1 | <1 | <0.5 | <1 | | 1,3,5-Trimethylbenzene | | <1 | <0.5 | <1 | <1 | <1 | 21 | <0.5 | 24° < 1 ° | | Xylenes, total | 1750 | <2 | < 1 | <2 | <2 | <2 | <2 | <1 | <2 | | Total Aromatic Hydrocarbor | าร | | | | | | : | | | | Halogenated Non-Aromatic | Hydroc | arbons | | | | | | | | | Carbon Tetrachloride | 0.5 | <1 | <0.5 | <1.5 | 41 | <1 | <1 | <0.5 | 1644180 | | Chloroform | 100 | # 0 < 1 0 0 | < 0.5 | <1 | # 21 P | <1 | <1 | <0.5 | 77 <1 0 | | 1,1-Dichloroethane | 5 | <1 | <0.5 | <1 | 1 1 | <1 | <1 | <0.5 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <0.5 | <2 | <2 | <2 | <2 | < 0.5 | <2 | | 1,1-Dichloroethene | 6 | 394 Eft < 1:0,552 Si | <0.5 | 1.2 | <1 | : 1345 < 1 346 : | *** <1 | < 0.5 | <150 | | cis-1,2-Dichloroethene | 6 | 21 | <0.5 | 1000 2111 | | 1 2 1 1 | <1 | < 0.5 | | | trans-1,2-Dichloroethene | 10 | 115 | <0.5 | 21 | <1 | <1 | ************************************** | < 0.5 | 部第 个 種語 | | Methylene Chloride | - 5 | <1 | <1 | <1 | ¥ <1 | <1 | *<1 | <1 | <1 | | Tetrachloroethene | 5 | | <0.5 | <1 | # | <1 | <1 | <0.5 | <1 | | 1,1,1-Trichloroethane | 200 | <1 | <0.5 | 41 < 1 1 1 1 1 1 1 | i <1 | <1 | <1 | <0.5 | ~1 1 | | 1,1,2-Trichloroethane | 5 | | <0.5 | ***** | 1 <1 | <1 | | <0.5 | <1 | | Trichloroethene | 5 | <1 | <0.5 | <1 | 1 <1 | <1 | | <0.5 | <1 | | Freon-113 | 1200 | <1 | <0.5 | <1 | <1 | <1 | | <0.5 | - 1 × 1 | | Vinyl Chloride | 0.5 | <1 | <0.5 | <1 | <1 | <15 | <1 | <0.5 | <1 | | Total Halogenated Hydrocar | rbons | | | 1.2 | | | | | | | Total Concentration of VOC | S | | | 1.2 | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit (D) = Duplicate sample Table C4.3-2 LBNL Temporary Groundwater Sampling Points Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | SB69A-99-1 | | SB76-97-2 | W76-97-3 | | | | | | |------------------------------|---------
--|---|--|--|--|---------------------------|-----------------------------|--------------------------|---------------------------------| | Constituent | MCL | Oct-99 | Nov-99 | Oct-97 | Feb-97 | Mar-98 | Aug-98 | Mar-99 | Oct-99 | Mar-00 | | Aromatic and Non-Halogenate | ed Hydr | ocarbons | | | | | | | | | | Benzene | 1 | | | | **** ** ** ** ** ** ** * | 1500 | <1 | <1 | | 1 × 1 × 1 | | n-Butylbenzene | | The state of s | <1 | <1 | | | <1 | <1 | <165 | <1. | | sec-Butylbenzene | | (1) | 451 21 1525 | <1 | <1 | <1 | <1 | <1 | / . < ! | 444. <1 -1 | | ter-Butylbenzene | | <1 | | <1 | 400,00 <1 0.000 | 15.00 | - < 1 - 5 | <1 | <14 | 450 < 1 740 | | Chlorobenzene | | <1 | 1.48.4 <1 .60.54 | <1 | 部建设 (1)基础 | | 2554<1555 | 2-6-72 < 1 90 m/s | 14.41 <]14.14 | 6 4 1 6 6 6 | | Ethylbenzene | 700 | <1 | | 15 (4 (-1 1 mm)) | | \$ 14 K-12 12 | 452 <12 55 | <1 | 10 4 2 1 5 Y | (4) (4) (4) (4) (4) (4) (4) (4) | | Isopropylbenzene | | 1100 < 2 00 d | - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | p-Isopropyltoluene | | <1 | | | ***** | <1 | WII < 1 | 88821080 | <1 | <1 | | Methyl tert-Butyl Ether | | <5 | 10 125 11 | <5 | | <5 | <5 | <5 | <5 | <5 | | Naphthalene | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | <1 | d | <1 | <1 | 15 | <1. | | <1 | <1 | | Toluene | 150 | <1 | <1 | <1 | | 400-61 < 1 (4) | raic <1 | kázna < 1 a jejm | <1: | | | 1,2,4-Trimethylbenzene | | <1 | . 24 W. 1 W. | 19.55 < 1 | | 4 4 mi < 1 miles | 4 1 < 1 6 S | 65/61 <1 50 | /4 <1 · | <1 | | 1,3,5-Trimethylbenzene | | | :-:::::::::::::::::::::::::::::::::::: | <1 | <1 | | (1) | <1 | <1 | 11.1. <1 | | Xylenes, total | 1750 | <2 | / / / / < 2 | ~2~~~ | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbons | | | | | | | | | | | | Halogenated Non-Aromatic H | ydrocai | bons | | | | | | | | • | | Bromodichloromethane | | <1 | <u> </u> | | A 4 < 120 % | | 5 6 K-15 6 A | <1 | <10.00 | | | Carbon Tetrachloride | 0.5 | <1 | | <1 | | 150 | <1 | <1 | <12.0 | 100 | | Chloroform | 100 | | ### &1 | <1 <1 | <1: | Ten Comme | 112 121 | \$100 < 1 000 | ^ 3 <1 · 3 | | | 1,1-Dichloroethane | 5 | | 1914 | 124721 | <1 | 1.0 | \$100 * 41 *** | 21 21 | | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | 6 | <1 | 1641 | <1 | <1 | 1.1 | 21 | S-8-2 -1 -5-2 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | 72.0 | 99.3 | 55 - < 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | <1 | 3.2 | 1.3 | 2.3 | <1.5 | 2.1 | | trans-1,2-Dichloroethene | 10 | <1-4 | 1.1 | 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < | <1 | | 100 4 < 1 (200) | 6 e <1 | -<1- +- | <1 | | Methylene Chloride | 5 | an declerance | | -6-6-<1:49 40 | <1 | <1 | 144 - | | 5 - 61 - | 375 as <1 13 ab | | 1,1,1,2-Tetrachloroethane | | - <2=5- | <2 | <2 | <2 | 2 | ₹2 | <2 | <2 | <2 | | Tetrachloroethene | 5 | | | | <1 | <1 | | <1 | | | | 1,1,1-Trichloroethane | 200 | | | ************************************** | ************************************** | ************************************** | *1 | ### \1 100 | <1 | 3048 < 1 6 m 31 | | 1,1,2-Trichloroethane | 5 | <1 | | <1. | * * <1 | | <1 | <1 | <1 | <1 | | Trichloroethene | 5 | <1 | <1 | <1 | 14.9 | 34.9 | 17.6 | 26.1 | 14.9 | 14.9 | | Freon-113 | 1200 | <1 | ا ک | <1 | | <1 | 6 4 1 5 5 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <1 | 1.6 | ×1. | <1 | <1/ | | <1 | <1 | <1 | | Total Halogenated Hydrocarbo | ns | 72.0 | 102.0 | marking to the | 14.9 | 40.2 | 18.9 | 28.4 | 14.9 | 17.0 | | Total Concentration of VOCs | | 72.0 | 102.0 | | 14.9 | 40.2 | 18.9 | 28.4 | 14.9 | 17.0 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis # LBNL Temporary Groundwater Sampling Points Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | W76-97-4 | | | | | | W76-97-5 | | | | | | |-----------------------------|----------|------------------------|--|--------------------------|---|---|--|--|----------------------|---|----------------------|------------------------|--------| | Constituent | MCL | Feb-97 | Mar-98 | Aug-98 | Mar-99 | Oct-99 | Mar-00 | Feb-97 | Mar-98 | Aug-98 | Mar-99 | Oct-99 | Mar-00 | | Aromatic and Non-Halogena | ated Hyd | drocarbons | | | | | | | | | 11-1-1 | | | | Benzene | 1 | 00 45 <1 000 | <1 | :/ar <1/ | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <1 | <1 | 1000-2100-2 | ## (1 1) | <1 | <1 | | <1 | | n-Butylbenzene | | 1946 | ### <1 ### | 1400 < 1 000 (| 110 | 112 21 | <1 | 7000<1000 | 1000 / -1000 | 1 (1) (1) (1) (1) (1) (1) (1) (1 | 11.6 | <1 | <1 | | sec-Butylbenzene | | ******* | 1 × 1 | 21 | - 12 m | 1112 | 2127 | 45561 | <1 | ∴ <11 or | <1 | <1 | <1 | | ter-Butylbenzene | | **** | <1 | | <1 | <1 | <1 | 250 < 1 250 | <1 | 61 × <10 - 6 | <1 | ₹ 1 | <1 | | Chlorobenzene | | | *** ********************************* | | <1 | <1 | <1 | <1 | <1- | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <1 | <1 |
<1 | | | <1 | | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | <2 | <2 | <2 | <2 | | p-Isopropyitoluene | | | ~ 4.41 | 1 400 | 300/41 <1 100 | k & <1 5.40 | <1 | EMPZ1MET | 254 <1 594 | 1.03e2 < 15 1000 | | <1 | <1 | | Methyl tert-Butyl Ether | | | 450 < 50 th | <5 | 神神(5月) | <5 | <5 | | <5 | <5 | <5 | <5 | < 5 | | Naphthalene | | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | n-Propylbenzene | | | <1 | 7 | ्राष्ट्र ा | SAMUEL SAMUEL | <1 | <1 | 34 35 41 3 B | <1. | <1 | <1 | <1 | | Toluene | 150 | 1 | - 19 21 | * | বিং | *1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ~<1 | <1 | <1 | <1. | | 1,3,5-Trimethylbenzene | | 2121 | <1 | < | <1/ | <[| <1 | <15.2 | <1 | <1 | <1 | - <1 · | <1 | | Xylenes, total | 1750 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbons | S | | | | | | | | | | | | | | Halogenated Non-Aromatic | Hydroca | arbons | | | | | | | | *************************************** | | | | | Bromodichloromethane | | | <1 | Z | <1 | <1 | <1 | <1 | <1 | 4. <1 | S <1 | <1 | <1 | | Carbon Tetrachloride | 0.5 | | <1 | | /a ≥ <1 = | <1 | <1 | <1 | (1) | <1 | -1.41 | <1 | <1 | | Chloroform | 100 | | <1 | <1 | ~1 | A CTANE | 2.02.0 < 1 65.2 | 1/4/ <1 /4/4 | E <1 | <1. | 9 4 Fe1 9 9 | <1 | <1 | | 1,1-Dichloroethane | 5 | 200 s 1 0 0 | \$0 - < 1 \$2\$ | <1 | 415 | <1 | <1 | <1. | 300多名1 。194 | <1 | <1 | 41 - 41 - 14 | <1 | | 1,2-Dichloroethane | 0.5 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | 1,1-Dichloroethene | -6 | | <1 | 717 | - 21 | 15 21 | <1 | <1 | # <1 · | <1 × × × 1 | - - <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | | <1 | 7 | in an | 15 | <1.5 | <1 | # 0<1 | <10 | <1 | <1 | <1 | | trans-1,2-Dichloroethene | 10 | | <1 | < | <1 | <1 | <t 1<="" <="" t="" td=""><td><1</td><td>3. <1.</td><td><1</td><td><1</td><td><1</td><td><1</td></t> | <1 | 3. <1. | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | 報算者1開題 | <1 | <1 | 2 < 1 £ 1 | a et | <1 | | ú <1 | | -44 <1 460 | <1 | <1 | | 1,1,1,2-Tetrachloroethane | | <2 | <2 | <2 | <2i | <2 | <2 | <2 | <2 | <2 | <2 | #### <2 - •• | <2 | | Tetrachloroethene | 5 | <1 | 6.8 | <1 | 4 < 1 | :::: <1:::::::::::::::::::::::::::::::: | 2.0 | 15 to | 1.5 | 3.7 | 1.8 | 1.6 | 3.1 | | 1,1,1-Trichloroethane | 200 | 5.6 <1 | <1 | 41 | | 0.415 | <1 | <1 | ∮ <1 | <1 | | <1 | <1 | | 1,1,2-Trichloroethane | 5 | | <1 | | | 21 | ~ ~1 ~ . | <1 | 事。<1 = 1 | / | <1 | <1 | <1 | | Trichloroethene | 5 | 14.9 | 4.0 | * | 4 | <1 | 7 - 2 1 | ***** | *** <1 | 1.2 | <1 | <1 | 5.7 | | Freon-113 | 1200 | <1.5 | <1 | <1 | (1) | <1 | <1 | <1 | 1> | ॉंं <1 : ाः | € <1 ∰ £ | <1 | <1 | | Vinyl Chloride | 0.5 | 4 | <1 | <1 | <1 | <1 | <1 | <1 | 1 <1 | <1 | <1 | <1 | <1 | | Total Halogenated Hydrocarb | ons | 14.9 | 10.8 | | | | 2.0 | | 1.5 | 4.9 | 1.8 | 1.6 | 8.8 | | Total Concentration of VOCs | | 14.9 | 10.8 | | | | 2.0 | | 1.5 | 4.9 | 1.8 | 1.6 | 8.8 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted = Less than Quantitation Limit = Compound not included in analysis # Table C4.3-3 LBNL Hydrauger Sampling # **Volatile Organic Compounds - EPA Method 8260** (concentrations in µg/L) | | | 77-01-01 | 77-01-02 | | 77-02-05 | | | | | 77-02-06 | | | |-----------------------------|----------|------------------------------|--|--|--|------------------------|-----------------------|-----------------|--|--|--|--------------------| | Constituent | MCL | Aug-98 | Jan-93 | Mar-93 | Jan-93 | Mar-94 | Aug-98 | Jan-00 | Feb-00 | Jan-93 | Mar-94 | Apr-94 | | Aromatic and Non-Halogena | ted Hydr | ocarbons | | | | | | | | | | | | Benzene | 1 | | 2012 | 4 | 1 × 1 | 1 2 2 1 2 2 | 34.41 | <1 | ************************************** | <1 | 1 | <1 | | n-Butylbenzene | | / * * * * * * * * * * | 21 -000 | ************************************** | 50021000 | 21.00 | <1 | <1 | <1 | ************************************** | | 40 Miles | | sec-Butylbenzene | | <1 | 1-1-21 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1. | <1 | | ter-Butylbenzene | | <1 | | <1 * * * * * * * * * * * * * * * * * * * | <1 | **** | <1 | <1 | <1.00 | 284, <1 883 | <1 | <1 | | Chlorobenzene | | <1 | <1 | <1 | <1 | <1 | <1 | <1 | :å | <1 | distriction of | %-i <1 | | Ethylbenzene | 700 | | 21 | | <1 | 3 4 K | <1 | <1 | <1 | येक रा जिल | 1 / (| .557 < 1 | | Isopropylbenzene | | <2 | <1 | <1 | 80 <185 | | <2 | <2 | <2 | <1.5 | <1 | <1 | | p-Isopropyltoluene | | 24 21 CCC | 1346 | <1 | <1 | 4.0% <1 # 5 | 4154 < 1 55 | 64 <1 | <1 | ************************************** | 1944 < 1 944 + | <1 | | Naphthalene | | <2 | 227721 | ## *1 | <1 | ************ | 2 < 2 | <2 | <2 | ************************************** | (| - 1 − 1 − 1 | | n-Propylbenzene | | | ₹1 | | <1 | | 15 ST 15 TO | <1 | 12 C1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <1 | 805 < 1 850 | ** | | Toluene | 150 | <1: | <1 | | <1 | 1000 | | िर्देश | <1:00 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | ा व | <1 | <1 | <1 | <1 | <1 | <1 | **** <1******************************** | <1 | <160 | <i>/</i> 1 <1 | | 1,3,5-Trimethylbenzene | | <1 | 21 <1 | ~1 ~ 1 | <1 | <1 | <1 | <1 | <1 | # 50 <1 .7 % | <1 | <1. | | Xylenes, total | 1750 | <2 | <1 | | | <1 | <2 | <2 | <2 | <1 | <1 | <1 | | Total Aromatic Hydrocarbons | | | | | | | | | | | | | | Halogenated Non-Aromatic I | Hydrocai | | | | 1 | | | | | 1 | | | | Bromodichloromethane | | | <f< td=""><td><1</td><td><1</td><td><1</td><td><10</td><td><1</td><td><1</td><td><1</td><td><1</td><td><1</td></f<> | <1 | <1 | <1 | <10 | <1 | <1 | <1 | <1 | <1 | | Carbon Tetrachloride | 0.5 | <1 | <1 | <1 | <1 | ~1 | 21 | <1 | £35, <15 sa - | <1 | <1 | <1 | | Chioroform | 100 | <1 | <16 | <1 | <1 | | <16.76 | <1 | <1 | See < 1 / Se | <1 | 35.5 C<1 | | 1,1-Dichloroethane | 5 | <1 | 9.3 | 1.5 | 4 1 4 1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | n e <1 | French Charles | <1 | <1 | <1 | <1 | 7 set <1 | | 1,2-Dichloroethane | 0.5 | <2 | 100 ~1 00 m | 100 < 1 00 | 21 C 34 | <1 | <2 | <2 | ○ · · <2 | <u> </u> | <1 | <1 | | 1,1-Dichloroethene | 6 | <1 | 19.0 | 3.4 | | - 1<1 | <1 | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | | <1 | | | <1 | 5,5 | 11.0 | 6.8 | <1 | 11.8 | <1 | | trans-1,2-Dichloroethene | 10 | <1 | <1 | | <1 | <1 | | - d | <1 | <1 | <1 | <1 | | Methylene Chloride | 5 | <17 | | <1 | <1 | <1 | (| - ব | <1 | <1 | <1 | <1 | | 1,1,1,2-Tetrachloroethane | | <2 | <1. | (1 × 1 × 1 × 1 × 1 × 1 × 1 | 1 < 1 | <1 | <2 | <2 | <2 | <1 | <1 | i≰⇔4 <1 | | Tetrachloroethene | 5 | <1 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | <1 | 44 < 1 % | <1/ | ं त | 同一《1 6》 | <1 | <1 | <1 | | 1,1,1-Trichloroethane | 200 | <14 | <1.5 | 600 < 136 all | | <1 | | | <1 | <1 <1 < € | <1 | <1 | | 1,1,2-Trichloroethane | 5 | | - <1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1 | <1 | ं स्वा | 里 《1》 | <1 | ************************************** | /* <1 · | | Trichloroethene | 5 | <1 | #### ** | <1 | | - 15 × 1 | | | <1 | <1 | <1 | <1 | | Freon-113 | 1200 | 44.44.41 (1.44.41) | <1 | 1 < 1 × 4 | 4664164 | | 21 × 6 × 6 | | 5 < 1 =#4 | 1 41 | <1 | <1 | | Vinyl Chloride | 0.5 | | <1 | <1 | 21 | <1 | 1.500 < 1.000 | | | <1 | <1 | <1 | | Total Halogenated Hydrocarb | ons | | 28.3 | 4.9 | J | | 5.5 | 11.0 | 6.8 | | 11.8 | | | Total Concentration of VOCs | | | 28.3 | 4.9 | glader er yezhoù and | a promote the highligh | 5.5 | 11.0 | 6.8 | | 11.8 | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ## LBNL Hydrauger Sampling ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 77-02-11 | | | 77-02-12 | 77-03-1 | | | | 77-03-03 | | |------------------------------
----------|--------------------------|---|--------------------------|--|--|------------|---------------------|-----------------------------|--|---| | Detected Compounds | MCL | Jan-93 | Mar-94 | Aug-98 | Aug-98 | Jan-93 | Mar-94 | Aug-98 | Jan-00 | Jan-93 | Aug-98 | | Aromatic and Non-Halogenat | ed Hydi | rocarbons | | | | | | | | | | | Benzene | 1 | <1 | <1 | <1 | <1 | | <1 | # <1 ° | <1 | F-65 < 1 5 (65) | <1 | | n-Butylbenzene | | <1 | <1 | a eµe <1 as a | < 1 | <1 | - <1 - | <1 | 9 Park (1 apres) | <1 | <1 | | sec-Butylbenzene | | <12 | | | | <1 | 2 1 | 985 (F < 1) (AC) | 4405 <1 8000 | - c1 | <1 | | ter-Butylbenzene | | t # 1 < 1 = 1 = 1 | | 6 0 2 2 1 2 3 3 | <1 | : ************************************ | 2 <1 = 2 | <1 | /3 d <1 cm | <1 | 41 | | Chlorobenzene | | 100000 | | 41 | - The Call 1991 | 14 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1 | <1 | | 1000 | | | Ethylbenzene | 700 | | | 21 | (1) | 15.00 | <1 | <1 | 21 | <1 | <10 | | Isopropylbenzene | | | <1 | <2 | <2 | 15 | 177 | <2 | <2 | ************************************** | <2 | | p-Isopropyltoluene | | | <1 | <1 | 6 1 | <1 | <1 | <1 | <1 | a <1000 | (1848) | | Naphthalene | | * 1 | | <2 | <2 | 1.0 | <1 | <2 | <2 | ₹1 | <2 | | n-Propylbenzene | | ~1 | <1 | <1 | <1 | 884- <1 888 | <1 | <1 | Popular «1 glumus | <1 | <1 | | Toluene | 150 | | huis (*<1 | <1 | 5 TO 14 TO 18 | - :: <1 :: : : : : : : : : : : : : : : : | <1 | <1 | #### **** | Alteret d'est pour |) | | 1,2,4-Trimethylbenzene | | ## <1 *## | | | ं रा | <1 | <1 | <1 | 1500<150 | 15 4 4 1 1 mm | <1 | | 1,3,5-Trimethylbenzene | | <144 | 1 <1 | 21 | <1 | <1 | <1 | <1 | <1 | <1 | ***** | | Xylenes, total | 1750 | <1 | 4 | <2 | <2 | 1000 | <1 | <2 | <2 | <1 | <2 | | Total Aromatic Hydrocarbons | | | - | | | | | | | | | | Halogenated Non-Aromatic F | lydrocar | rbons | | | | | | | | | | | Bromodichloromethane | <u> </u> | ### ** | <1 | <1 | | <1 | 4 <1 5 | <1 | <10.0 | <1 | 원원조 (1 년 / 연 | | Carbon Tetrachloride | 0.5 | <1 | -1 | 1 1 | * (*********************************** | 1000 | <1 | ~ <1 - | 2014 < 1 | <100 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | Chloroform | 100 | | | <1 | | <1 | <1 | 100 (210) | <1 | <14 | a 3.3 < 16.64 | | 1,1-Dichloroethane | 5 | | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <1 | <1 | <2 | <2 | <1 | <1 | <2 | <2 | <1 | <2 | | 1,1-Dichloroethene | 6 | <1 | <1 | <1 | | 1.000 <1.000 | <1 | <1 | <1 | <1 | <1000 | | cis-1,2-Dichloroethene | 6 | -24 7<1 0 - | 1.00.41.00.00 | <1 | | // <1 € % | <1 | <1 | <1 | (< 1 / | <1 | | trans-1,2-Dichloroethene | 10 | ## ** <1#### | 2 W <1 000 | ∮ # < 1 | | <10.00 | - ' <1- I | <1 | 5 6 < 1 6 6 | 775 <10 F | 9-6-41 | | Methylene Chloride | 5 | <1 | <1 1 | <1 | <1 | 12741 | <1 | \$15 61 5 46 | \$41.87 <1 9.8787 | <1 | #25 **<1 **** | | 1,1,1,2-Tetrachloroethane | | <1 | <1 | <2 | <2 | | <1 | <2 | 2 2 | <1 | <2 | | Tetrachloroethene | 5 | त | 111111111111111111111111111111111111111 | <1 | <1 | | <1 | <1 | 0.65 <1 (1.65) | <1 | <1.00 | | 1,1,1-Trichloroethane | 200 | | <1 | <1 | <1 | <1 | <1 | <1 | 414 | <1 | <1/ | | 1,1,2-Trichloroethane | 5 | á (1 7 | دا د | <1 | <1 | <1. | <1 | <1 | <1 | - 6 - < 1 - 5 - 5 | <1 | | Trichloroethene | 5 | 25 <1 | <1 | <1 | <1 | <1 | <1 | <10.00 | <1:: | <1 | 100 4 1000 | | Freon-113 | 1200 | 46667 <1 67668 | | . 6 <1 . 3 5 | 40 Fare - < 1 (64 00 50 00 | (0.000 e <1 miles | <1 | <1 | 110.<10° | | 21 | | Vinyl Chloride | 0.5 | | 20061300 | ### *1 | 241 | | <1 | ## <1 (34) | 55 41 <1 7544 | <1 | BOOK TO KENEDO | | Total Halogenated Hydrocarbo | ons | | | | | | | | | | | | Total Concentration of VOCs | | | | | | | | | | | | | | • | | | | | | h | · | | L | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted ## LBNL Hydrauger Sampling ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | 77-04-03 | | 77-04-04 | | | | 77-04-06 | | | 77-04-07 | | | | |----------------------------|----------|---|---|---|-------------------|-------------|--|---------------------------|--|------------------------|-----------------|------------------------------|-------------------------|-------------------------| | Constituent | MCL | Jan-93 | Aug-98 | Jan-93 | Mar-94 | Aug-98 | Jan-00 | Jan-93 | Aug-98 | Jan-00 | Jan-93 | Mar-94 | Aug-98 | Jan-00 | | Aromatic and Non-Haloger | nated H | vdrocarbons | | | | | | | | | | | | | | Benzene | 1 | B 70 < 15 77 | 21 5 | 366 <1 | <1 | <1 | 55 61 55 | 维学 21 数多 | <1 | <1 | <1 | <1 | <1 | <1 | | n-Butylbenzene | | 8099 <1 909 | 20061000 | *************************************** | <1.00 | <1 | 19641 P. C | 252198 | 14 G < 1 4 G | <1.5 | <1 | <1 | <1 | <1 | | sec-Butylbenzene | | <10 | 1 <1 | <1 | 1772 | <1 | <1 | 3 6 2 1 7 9 | <1/ | <1 | 451 | <1 | <1 | <1 | | ter-Butylbenzene | | <1 | <1 | *** | 1 | <1 | *** | <1 | <1 | 23 | % ° < 10 € 1 | <1 | <1 | :: <1 | | Chlorobenzene | | <1 | <1 | <1 | 1 6 | 1 41 | <1 | <1 | | <1 | <1 | <1 | <1 | <1 | | Ethylbenzene | 700 | <1 | <1 | <1 | <1 | <1 | <1 | 基础 长1 000年 | 1.4<1.4 | <1 | <1 | <1 | <1 | <1 | | Isopropylbenzene | | | <2 | <1 | <1 | <2 | <2 | 61,00 <1 ,48,64 | <2 | <2 | <1 | <1 | <2 | <2 | | p-Isopropyltoluene | | <1 | <1 | <1 | ## * 1 *** | | <1 | 3.0 < 15.4 5 | 1 <1 0 | 56 % < 1 | <1 | <1 | <1 | <1 | | Naphthalene | *** | - 11 × 11 × 11 × 11 × 11 × 11 × 11 × 11 | <2 | 1 | | <2 | <2 | 300 <1300 | ** <2 | <2 | <1 | <1 | <2 | <2 | | n-Propylbenzene | | <1 | <1 | 1 | 15 | <1 | 2112 | 21 | 100 | 经营运1 多等 | <1 | <1 | 5/12/15/1 | <1 | | Toluene | 150 | <1 | <1 | ******* | 1 | <1 | * 1 | 15 | <1 | <1 | <1 | ** * 150 | 2.24 | <1 | | 1,2,4-Trimethylbenzene | | | anadreši paryšii
Kliji sa | | | | <1 | <1 | 11/2 | <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | ***** | <1 | 1 | | | <1 | <1 | ## <1 5 h | <1 | <1 | <1 | <1 | <1 | | Xylenes, total | 1750 | : : <1:; | <2 | <1 | <1 | <2 | <2 | <1 | <2 | <2 | <1 | . <10 | <2 | <2 | | Total Aromatic Hydrocarbo | ns | | | | | | | | | | | | | | | Halogenated Non-Aromatic | Hydro | carbons | | | | | | | | | | | | | | Bromodichloromethane | <u> </u> | <1°/ | <1 | | <1 | <1 | <1 | <1 | # * * 1 | <1 | <1.0 | <1 | <1 | <1 | | Carbon Tetrachloride | 0.5 | <1 | <1 | 1112 | <1 | <1 | ¥1 ≥ 1 | <1 | <1 | <1 | <1 | <1 | ##* <14 G | <1 | | Chloroform | 100 | <1 | <1 | <1 | <1 | <1 | 1>2 | <1 | <14.0 | <1 | <1 | - <1: · | <1 | :: <1 | | 1,1-Dichloroethane | 5 | :::::::< <u> </u> :::::::::::::::::::::::::::: | 3 5 < 1 5 5 | <1 | <1 | <1.5 | 355 <1 55 | 1.65 < 1 5.45 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | <150g | (27 S | <1 | <1 | <2 | <2 | | <2 | <2 | <1 | <1 | <2 | <2 | | 1,1-Dichloroethene | 6 | 1 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <1 | 72004<1 | <1 | | | ******* | <1 | <1 | <1 | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <1 | tr | <1 | | <1 | ### * * * * * * * * * * | | ## <1## | 1962 1 964 | <1 | - 1 | <10 | <1 | | trans-1,2-Dichloroethene | 10 | <1 | <1 | ાન | | | 15.15 | 4,475 | <1 | 1112 | <1 | -/ <1-/ | <1 | <1 | | Methylene Chloride | 5 | <1 | <1 | 15.05 | | <1 | 11/2 | <1 | <1 | (411-3) | <1 | <1 | <1 | <1 | | 1,1,1,2-Tetrachloroethane | | 15 | <2 | | | <2 | <2 | <1 | <28 | <2 | <1 | | <2 | <2 | | Tetrachloroethene | 5 | (< 1 · | <1 | <1 | ## <1 - 1 | <1 | 4 < 1 | 1.0 <1 0.0 | <1 2 | <1 | <1 | <1 | 100 < 1 00 80 | < 1 | | 1,1,1-Trichloroethane | 200 | 2 1 < 1 / 2 | 4 6 < 1 0 / 2 | <1 | <1 | | <1 | <1 | <1 | *** <1 *** | <1 | (1) | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <1 | <1 | <1 | <1 | 10041 | <1 | 3050 < 1 646 | 温号を1課金 | 1.60 <1 6004 | 10 <100 | 2 21 | <1 | <1 | | Trichloroethene | 5 | 7 < 1 F 5 | # 21 2 19 20 | ************************************** | | 1 41 | 115 | <1 | ं दी | <1 | <1 | 21 | // <1 | <1 | | Frean-113 | 1200 | ************************************** | <1 | | 71/521 | - E1 | <1 | 21/2 | <1 | <1 | <1 | *** ** * * * * * * * | <1 | 1884 < 1 4 Th | | Vinyl Chloride | 0.5 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | ** ********************************** | <1 | ভাষা ং ব | <1 | €1 €1 | 1 21 | | Total Halogenated Hydroca | rbons | <u></u> | | | | | | | | | | | | | | Total Concentration of VOC | s | | | | 1, | Programme S | erin et en | | | | | | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted # Table C4.3-3 (Cont'd) LBNL Hydrauger Sampling ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | <u> </u> | 77-04-08 | | | | 77-04-11 | 77-04-13 | 77-05-01 | | |------------------------------|----------|---|-----------------------|----------------------------|------------------------------|--|--------------------------|--|---| | Constituent | MCL | Jan-93 | Mar-94 | Aug-98 | Jan-00 | Jan-00 | Jan-93 | Jan-93 | Aug-98 | | Aromatic and Non-Halogena | ted
Hydi | rocarbons | | | | | | | | | Benzene | 1 | 5454 <1 5443 | ं दो है। | <1 | 49-18- < 1 -7-45-8 | <1.00 | <1 | <1 | <1 | | n-Butylbenzene | | 72.44 <1 8899 | | | 3545 < 1 5545 | 5 <1 C | <1 | 29452 <1 6000 | <1 | | sec-Butylbenzene | | N4-77 < 1 5 7 7 | | 2 2 1 2 2 | <1 | 37.26 | <1 | 7502 <1 0.00 | <1 | | ter-Butylbenzene | | <1 | | 11111 | - | <1 | - Kita | | <1 | | Chlorobenzene | | 17 5 < 1 5 1 5 1 5 1 | | <1 | # 15 E 1 | **** ******************************** | <1 | 45 C < 1 6 0 7 | <1 | | Ethylbenzene | 700 | <1 | 2122 | <1 | <1 | 75 P. C1 | <1 | <10 | <1 | | Isopropylbenzene | | 41 2.5 | <1 | <2 | <2 | <2 | <1 | | <2 | | p-Isopropyltoluene | | <1 | <15 | <1 | <1 | √ <1 · | <1 | 4155 C | / <1 | | Naphthalene | | <1 | 1 × 1 | <2 | <2 | <2 | 4665<1 | 100 < 1 00 × 1 | <2 | | n-Propylbenzene | | ### <1 #### | 5345 < 1555 | <1 | | <1 | 144 <1 | <1 | <1 | | Toluene | 150 | | 1177 | <1 | - <1 | <1 | 949-21-5 | 21 T | 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14 - | | 1,2,4-Trimethylbenzene | | *************************************** | <1 | 21 21 1 S | <1 | <1 | 1.00 kg (1.00 kg) | <1 | - (*1 | | 1,3,5-Trimethylbenzene | | \$*** < 1 | (1 t) | <1 | <1 | <1 | 12741 | <1 | <1 | | Xylenes, total | 1750 | <1 | <2 | <2 | <2 | <2 | <2 | <2 | <2 | | Total Aromatic Hydrocarbons | | | | | | | | | | | Halogenated Non-Aromatic I | lydroca | rbons | | | · | | L | l <u>1</u> | | | Bromodichloromethane | | <1 | | <1 | <1 | <1 | <1 | <1 | <1 | | Carbon Tetrachloride | 0.5 | <1 | त | <1 | <1 | <1 | 145-22-165 E | <1 | 33.3 <1 -3.5 | | Chloroform | 100 | <1 | in said | <1 | <1 | 21 21 | <1 | <1 | # <1 | | 1,1-Dichloroethane | 5 | c 1 | | <1 | // - 1 | <1 | <1 | 24 21 | | | 1,2-Dichloroethane | 0.5 | <1 | | <2 | <2 | <2 | \$100.7 <1 0.4 | a.c. ≤ <1 a.c. | <2 | | 1,1-Dichloroethene | 6 | // cl | | <1 | <15 | s 45 <1 | 1 4 < 1 0 0 | 200 21 (0) | <1 | | cis-1,2-Dichloroethene | 6 | | | <1 | <1 | <1 | ### ** 1 | 3d a < 1 | 2 2 1 1 | | trans-1,2-Dichloroethene | 10 | <1 | | 2000 2 1980 % | < 1000 | <1 | # 75 < 1 (5) | 20002120 | i se e i se a | | Methylene Chloride | 5 | <1 | | <1 | <1 | <1 | <1 | 75-2- 31 | <1 | | 1,1,1,2-Tetrachloroethane | | <1 | 21/21/21 | <2 | <2 | <2 | <1 | <1 | <2 | | Tetrachloroethene | 5 | <1 | 174100 | <1 | 21027 | <1.5 | <1 | š -<1 | 5 %<1 / S | | 1,1,1-Trichloroethane | 200 | <1 | <1 | <1 | <12.0 | - E | <1 | <1 | <1 | | 1,1,2-Trichloroethane | 5 | <1 | | <1.6 | 200 < 1 0 mm | <1 | | | | | Trichloroethene | . 5 | <1 | | <1 | <1 | <1 | - <1 | 9979 <1 090 | 2018-1 | | Freon-113 | 1200 | | 7/46-2 /21 | at rest < 1 % or | <1 | 9 1 61 9 9 | *********** | | 2012 | | Vinyl Chloride | 0.5 | <1 | | <1 | <1 | 1 de 1 et 1 | 1000 | in the second | /****<1 | | Total Halogenated Hydrocarbo | ons | | | | | | | | e e eg * tepp :: | | Total Concentration of VOCs | | 1 | | | | | | | | | | ****** | · | | • | | | L | l ———————————————————————————————————— | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted # Table C4.3-4 LBNL Slope Stability Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | SSW1-130 ^a | | | SSW3-130 ^a | SSW4-130 ^a | SSW5-130 ^a | SSW9-130° | | | |-------------------------------|---------|---|----------------------------|-----------------------|--|---|-----------------------|--------------------------|-------------------------|-------------------------| | Constituent | MCL | Jan-93 | Sep-94 | May-97 | May-97 | May-97 | May-97 | Jan-93 | Sep-94 | May-97 | | Aromatic and Non-Halogenate | d Hydro | carbons | | | | | | - | | | | Benzene | 1 | a a<1 a | <1 | <1 | | <1 | 1 4 6 < 1 | <10.0 | <1.5 | <1 | | n-Butylbenzene | | <1 | 4 (1 disa | <1 | | <1 | : (1) | <1 | <1 | <1 | | sec-Butylbenzene | | <1 | <1 | <1 | 15 01 | <1 | *** *1 | 147 <1 47 | <1 | <1 | | ter-Butylbenzene | | ા લા | 1 | <1 | 251112 | 21 × 12 × 12 × 12 × 12 × 12 × 12 × 12 × | <1 | 5 | <1 | <1 | | Ethylbenzene | 700 | <1 | <1 | <1 | <1 | <1 | <1 | <t> 1</t> | <1 | <1 | | Isopropylbenzene | | <1 | <1 | <2 | | <2 | <2 | <1 | 6 <1 G | <2 | | p-Isopropyltoluene | | ::::::<1 | <1 | 3 <1 30 4 | 2.5 | 2014 | 15.8 | 5557 ~1 755 | <1 | <1 | | Naphthalene | | - C<1 | <1 | <2 | <2 | <2 | <2 | <1 | 0 - <1 h | <2 | | n-Propylbenzene | | 15<1 | <1 | <1 | None LT | 41 | <1 | <1 | <1 | <1 | | Toluene | 150 | 1 | *** | <1 | 15 | <1 | 7 - 31 - 1 | <1 | <1 | <1 | | 1,2,4-Trichlorobenzene | 70 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | 1,2,4-Trimethylbenzene | | ~1 | <1 | <1 | <1 | - <1 | <1 | <1 | <1 | <1 | | 1,3,5-Trimethylbenzene | | <1 | <1 | <1 | and 2<1 mm | <1 | 2 - 21 , 225 | <1: | <1 | <1 | | Xylenes, total | 1750 | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | <1 | <2 | <2 | <2 | <2 | <1 | <1 | <2 | | Total Aromatic Hydrocarbons | | | | | 2.5 | | 15.8 | | | | | Halogenated Non-Aromatic Hy | drocarb | ons | | | | | | | • | *** | | Bromodichloromethane | | <1 | <1 | <1 | <1 | <1 | <1 | <1 | | <1 | | Carbon Tetrachloride | 0.5 | <1 | <1 | <1 | | <1 | <1 | <1 | / <1 | <1 | | Chloroform | 100 | <1 | <1 | <1 | 3 (7 < 1 € 6) | <1 | 140000 | 5.75 <1 5.377 | <1 | <1 | | 1,1-Dichloroethane | 5 | | ### *1 | <1 | ### <1 **** | <1 | 1.3 | <1 | <1 | <1 | | 1,2-Dichloroethane | 0.5 | | <1 | <2 | <2 | <2 | <2 | <1 | 75.8X <1 5.00 | <2 | | 1,1-Dichloroethene | 6 | <1 ₹1 ₹1 | <1 | <1 | 13 41 | <1 | 1.4 | - (* - (* 1) | <1 | <1 | | cis-1,2-Dichloroethene | 6 | <1 | <1 | <1 | <1 | 11.5 | 11 题 《 12 》。 | 26.2 | 2.8 | 3.0 | | trans-1,2-Dichloroethene | 10 | <1 | 1 | <1 | <1 | <1 | ## <1 % | - 5 - < 1 (45) | < | <175 | | Methylene Chloride | 5 | <1 | <1 | <1 | | <1 | 6 T | <1 | <1 | <1.5 | | Tetrachloroethene | 5 | Cua < 1 (4) (6) | <1 | - | ******** | <1 | (1) (1) | <1 | | <1 | | 1,1,1-Trichloroethane | 200 | 106<1 | :::::(<1 -::::: | <1 | 41 - 1 | <1 | - 12 | <1.70 | <1 | 1350 <1 50 EV | | 1,1,2-Trichloroethane | 5 | <1 | | <1 | <1 | <1 | | <1 | | 757<1 | | Trichloroethene | 5 | <1 | दा | * 1 | * *********************************** | <1 | 2<1 | <1 | <1 | <1 | | Freon-11 | | <1 | <1 | <2 | <2 | <2 | <2 | <1 | <1 | <2 | | Freon-113 | 1200 | <1 | <1 | <1 | <1 | <1 | <13 | <1 | <1 | <1 | | Vinyl Chloride | 0.5 | <1 | | <1 | < 1 | <1. c | * <1 | <1 | <1 | <1 | | Total Halogenated Hydrocarbor | ıs | | | | | 11.5 | 2.7 | 26.2 | 2.8 | 3.0 | | Total Concentration of VOCs | | | | n Shant Alle his et e | 2.5 | 11.5 | 18.5 | 26.2 | 2.8 | 3.0 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted All samples are grab samples ⁼ Less than Quantitation Limit ^{* =} Analysis by BC Laboratories ^a = Abandoned to prevent infiltration of surface water ## **LBNL Slope Stability Well Results** ## Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | SSW13-130 ^a | | | SSW15-130ª | | SSW16-130 | 1 | | | |-------------------------------|---------|------------------------|---------------------------|--|-------------------------|---|----------------|---|----------------------------|------------------------------| | Constituent | MCL | Jan-93 | Sep-94 | May-97 | Јап-93 | May-97 | Dec-92 | Sep-94 | Oct-94* | May-97 | | Aromatic and Non-Halogenated | i Hydro | carbons | | | | | | | | | | Benzene | 1 | <1 | 経過される | 制度 1985 | 第46 <1件会 | / / / / / / / / / / / / / / / / / / / | <5 | <1 | <0.5 | <1 | | п-Butylbenzene | | | 1 <1 | <199 | <1 | <1 | <5 | 14 - 1 | <0.5 | -30 a. <1 0,550 | | sec-Butylbenzene | | - <1s | 1000 :<1 000 | <1 | #6#50 <1 9### | <1 | <5 | <1 | < 0.5 | () an <1 666 | | ter-Butylbenzene | | <1 | <100.2 | <1 | 169-16-16-16 | <1 | <5 | <1 | <0.5 | <1 | | Ethylbenzene | 700 | <1 | | 5396 21 994 | ##### * | <1 | <5 | 1 - < 1 | < 0.5 | <1 | | Isopropylbenzene | | <1 | | <2 | **** | <2 | <5 | <1 | < 0.5 | <2 | | p-Isopropyltoluene | | <1. | <1 | <1 | 1 < 1 = 2 < | <1 | <5 | <1 | < 0.5 | <1 | | Naphthalene | | <1 | <1 | <2 | 60.5<1.6m2 | <2 | <5 | 5/1/2/1 | < 0.5 | <2 | | n-Propylbenzene | | Serie Classes | 59 (5 < 1 5 5 5 | 160 <1 650 | 35% <15% | 4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4. | <5 | <1 | < 0.5 | <1 | | Toluene | 150 | <1 | (1 × 1 × 1 | | <1 | <1 | <5 | <1 | <0.5 | <1 | | 1,2,4-Trichlorobenzene | 70 | 24442 | 400 21 059 | 100 <100 | <1.5 | <1 | <5 | <1 | <0.5 | <1. | | 1,2,4-Trimethylbenzene | | <1: | <1 | <1 | <1 | <1 | <5 | <1 | <0.5 | .iij.lag <1 :50:55 | | 1,3,5-Trimethylbenzene | | <1 | <1 | <1 | <1 | <1 | <5 | <1 | <0.5 | 1945 - 1 945 | | Xylenes, total | 1750 | <1 | <1 | <2 | <1 | <2 | <5 | 2 1 < 1 | <1 | <2 | | Total Aromatic Hydrocarbons | | | | | | | 1 | , | | | | Halogenated Non-Aromatic Hy | drocarb | ons | | | | | J L | 1 | | · | | Bromodichloromethane | | <1 | | <100 | 建设设置 | <1 | <5 | <1 | <1 | <1 | | Carbon Tetrachloride | 0.5 | <12 | <1 | - 1 | <1 | | <5 | <1 | <1 | 2 41 | | Chloroform | 100 | <1 | <1 | <1 | 2,2 | <1 | <5 | | <1 | <1 | | 1,1-Dichloroethane | 5 | <1 | <1 | <1 | 0755 <1 965 | <1 | <5 | <1 | <1 | <1.0 | | 1,2-Dichloroethane | 0.5 | ~ ~ 15 ° | 4 1 K | <2 | 100 4 1 6 18 | <2 | <5 | - / - <
1 | /# <1° | 5 × 2 × | | 1.1-Dichloroethene | 6 | | | | 9-11-0 | <1 | <5 | <1 | <1 | <1-0 | | cis-1,2-Dichloroethene | 6 | 3.8 | 1.8 | 4070124333 | <1 | <1 | <5 | 113.5 | 140.0 | 26.6 | | trans-1,2-Dichloroethene | 10 | <1 < 1 | | ###################################### | 378841887 | <1 | <5 | 15 × < 1 | 1.2 | <1 | | Methylene Chloride | 5 | <1 | <1 | <1 | <1 | <1 | <5 | <1 | Mara < 10 88 8 | <1 | | Tetrachloroethene | 5 | | | <1 | <1 | <1 | <5 | ii = <1 | <1 | < 1 | | 1,1,1-Trichloroethane | 200 | 30 to <10 cm | | 996-<14-9 | e i | <1 | <5 | <1 | 45/11 < 1 5/40 c | | | 1,1,2-Trichloroethane | .5 | <1 | <1 | 940-41 | W 41 | <1 | <5 | 部で <1 代数 | <1 | 0.00<10 | | Trichloroethene | 5 | <1 | <1 | - 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1 | <1 | 21 | 4 5 | <1 | <1 | | | Freon-11 | | <1 | <1 | <2 | <1 | <2 | <1.1 | 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <1 | <2 | | Freon-113 | 1200 | <1 | <1 | <1 | ## <1 E | <1 | <0.6 | <1 | <1 | a di v | | Vinyl Chloride | 0.5 | <1 | <1 | <1 / | <1 | ## < 1 | <5 | <1 | <1 | <1 | | Total Halogenated Hydrocarbon | S | 3.8 | 1.8 | | 2.2 | | | 113.5 | 141.2 | 26.6 | | Total Concentration of VOCs | | 3.8 | 1.8 | | 2.2 | | | 113.5 | 141.2 | 26.6 | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted All samples are grab samples ⁼ Less than Quantitation Limit ^{* =} Analysis by BC Laboratories ^a = Abandoned to prevent infiltration of surface water ## Table C4.3-4 (Cont'd) LBNL Slope Stability and Slope Indicator Well Results Volatile Organic Compounds - EPA Method 8260 (concentrations in µg/L) | | | SSW19-130 | 3 | | | SSW20-130 | SSW21-130 | | |-----------------------------|------------|---|---------|---------------------------|-------------------|---|-----------|--| | Constituent | MCL | Mar-94 | May 94* | Sep-94 | (D) | May-94* | May-94* | | | Aromatic and Non-Halogena | ited Hydro | carbons | | | | | | | | Benzene | 1 | | <0.5 | <10.5 | <10.00 | <0.5 | < 0.5 | | | n-Butylbenzene | | | <0.5 | <1 | <17.7 | <0.5 | /***<0.5 | | | sec-Butylbenzene | | | <0.5 | <1 | ~1 | <0.5 | < 0.5 | | | ter-Butylbenzene | | | <0.5 | 11 21 | <1 | <0.5 | <0.5 | | | Ethylbenzene | 700 | <t< td=""><td><0.5</td><td><1.</td><td><1</td><td>< 0.5</td><td><0.5</td></t<> | <0.5 | <1. | <1 | < 0.5 | <0.5 | | | Isopropylbenzene | | - - 1 | <0.5 | 分声 <1 | <1 | <0.5 | < 0.5 | | | p-Isopropyltoluene | | | <0.5 | 18, 50 <1 1.50 | <1 | <0.5 | < 0.5 | | | Naphthalene | | | <0.5 | <1 | <1 | <0.5 | < 0.5 | | | n-Propylbenzene | | | <0.5 | 15 61 | <1. | <0.5 | <0.5 | | | Toluene | 150 | | <0.5 | <1 | | <0.5 | < 0.5 | | | 1,2,4-Trichlorobenzene | 70 | | <0.5 | <13 | ## <1 | < 0.5 | < 0.5 | | | 1,2,4-Trimethylbenzene | | | <0.5 | <1. | <1 | <0.5 | <0.5 | | | 1,3,5-Trimethylbenzene | | ## / * | <0.5 | 15.5 A | <1 | < 0.5 | <0.5 | | | Xylenes, total | 1750 | 1.00.00 <1 .00.03 | <1.0 | <1 | - e <1 - 3- | <1.0 | <1.0 | | | Total Aromatic Hydrocarbons | 3 | | | | | | | | | Halogenated Non-Aromatic | Hydrocarb | ons | | ' | | *************************************** | | | | Bromodichloromethane | | 1 | <0.5 | <1 | <1 | <0.5 | < 0.5 | | | Carbon Tetrachloride | 0.5 | <1 | <0.5 | <1 | <1/ | <0.5 | <0.5 | | | Chloroform | 100 | 56 64 (1 mm) | <0.5 | <1 | <1 | <0,5 | < 0.5 | | | 1,1-Dichloroethane | 5 | | < 0.5 | | 41 C | < 0.5 | <0.5 | | | 1,2-Dichloroethane | 0.5 | 41 | <0.5 | <1 | <1 | <0.5 | <0.5 | | | 1,1-Dichloroethene | 6 | | <0.5 | <1 | Val 25 2 12 march | <0.5 | <0.5 | | | cis-1,2-Dichloroethene | 6 | | <0.5 | <1 | <1 | <0.5 | < 0.5 | | | trans-1,2-Dichloroethene | 10 | <1 | <0.5 | 15.05.25 1 5.05.25 | <1 | < 0.5 | <0.5 | | | Methylene Chloride | 5 | | <0.5 | <1 | | <0.5 | <0.5 | | | Tetrachloroethene | 5 | THE STREET | <0.5 | <1 | <1.0 | < 0.5 | <0.5 | | | 1,1,1-Trichloroethane | 200 | | <0.5 | gmany phasin | 21 25/ | <0.5 | <0.5 | | | 1,1,2-Trichloroethane | 5 | | <0.5 | ### *<1 | 40-21 | <0.5 | < 0.5 | | | Trichloroethene | 5 | <1 | <0.5 | <1 | <1 | <0.5 | <0.5 | | | Freon-11 | | | <0.5 | <1 | <1 | <0.5 | <0.5 | | | Freon-113 | 1200 | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | <0.5 | <1 | <1 | < 0.5 | <0.5 | | | Vinyl Chloride | 0.5 | | <0.5 | <1 | <1. | <0.5 | <0.5 | | | Total Halogenated Hydrocarb | ons | | | | | | | | | Total Concentration of VOCs | |] ng 2 2 | | (48) 1 c | | | | | | Total Concentiation of VOCS | <u> </u> | <u> </u> | | 201 - Ac. | | L | | | MCL = Maximum contaminant level for drinking water All analyses by LBNL EML unless otherwise noted All samples are grab samples ⁼ Less than Quantitation Limit ^{* =} Analysis by BC Laboratories ^a = Abandoned to prevent infiltration of surface water # Table C4.4-1 Groundwater Monitoring Well Results Concentrations of Total Petroleum Hydrocarbons and Oil & Grease (Concentrations in μg/L) | RFI Unit | Aroa | Well No. | Date | Lab | TPH-Diesel | TPU Carolina | TPH-Kerosene | TPH-FI | Oil & Grease | |-----------|------|-----------------|----------|---------|-------------------------|---------------------------------------|---------------------|-------------------------------|---------------| | · | | | Date | Lau | I FR-Diesei | TFH-Gasonne | I F II - Nei Oseile | 111111 | Oil & Citease | | Groundwai | 3 | onitoring Wells | Man OC | | | | | 400 | | | | 3 | MW91-4 | Mar-96 | BC | | | | (Diesel) | | | | | | | | | | | (Diesei) | | | | | | Aug-96 | BC | 120 | | | | | | | | | Dec-96 | BC | 110 | | | | | | | | | Jun-97 | BC | | | | 490 | | | | | | | | | | | (Crude/Waste Oil) | | | | | | | | | | | 490 (D) | | | | | | | | | | | (Crude/Waste Oil) | | | | | | Jun-98 | BC | | | | 460 | | | | | | | | | | | (Crude/Waste Oil) | | | | | | Jun-99 | BC | | | | 160 | | | | | | | | | | | (Crude/Waste Oil) | | | | | | | | | | • | 98 | | | | | | | | | | | (Diesel) | , | | | | MW91-5 | Aug-97 | BC | | | | 100 | | | | | 1414431-3 | /ag 5/ | Δ, | | | | (Crude/Waste Oil) | | | | | 75-92-23 | Jul-96 | BC | | | | ND ND | | | | | 75-92-23 | Mar-97 | BC | <50 | <50 | | NO. | | | | | 75-90-20 | IVIAI-57 | <i></i> | <50 (D) | <50 (D) | | | | | | | 75-97-5 | Mar-99 | BC | | | | 260 | | | | | | | | | | | (Crude/Waste Oil) | | | | | 69-97-8 | Jan-99 | BC | | | | 350 | | | | | | | | | | | (Crude/Waste Oil) | | | | | 1 | | | | | | 250 | | | | | * | | | | | | (Diesel) | | | | | 75-98-15 | Feb-00 | ВС | | | | ND | | | SWMU 4-2 | 4 | 76-92-25 | Mar-94 | BC | | <50 | | ND | | | AOC 4-1, | Ì | | Aug-94 | BC | <200 | <50 | | | <1000 | | AOC 4-2 | | | Dec-94 | BC | THE OWNER OF THE OWNER. | intritivation of a contraction of the | | ND 2 | | | 700 +2 | | | Feb-95 | BC | | | | ND | | | | | | Nov-95 | BC | <50 | <50 | | | | | | | | Mar-96 | BC | <50 | <50 | | | | | | | | Aug-96 | BC | <50
<50 | <50
<50 | | | | | | ŀ | | Dec-96 | BC | <50 | <50 | | | | | | | | Mar-97 | CLS | enera Court | etinggitus VA decommen | | <50 | | | | | | IVIAI-51 | BC | | | | ND (D) | | | | | | | L. | | ! | | שא (פ)
אר (S) און אר (פייי | | | | | | Aug-97 | BC | | | | ND (0) | | | | | 1 | Lug-31 | L. | | | | ND (D) | | | | | | | | | | | ND (S) | | | | | | Feb-98 | BC | | | | ND | | | AOC 4-1, | 4 | MW76-1 | Aug-92 | BC | 99 | <50 | | | | | AOC 4-2 | | | May-93 | BC | <50 | <50 | | | | # Table C4.4-1 Groundwater Monitoring Well Results Concentrations of Total Petroleum Hydrocarbons and Oil & Grease (Concentrations in μg/L) | RFI Unit | Area | Well No. | Date | Lab | TPH-Diesel | TPH-Gasoline | TPH-Kerosene | TPH-FI | Oil & Grease | |----------|------|----------|------------------|-----|------------|--------------|--------------|-------------------|--------------| | AOC 4-1, | 4 | MW76-1 | Mar-94 | BC | | <50 | | 1700 | | | AOC 4-2 | | | | | | | | (Crude Oil) | | | | | | Jun-94 | BC | 450 | | | | | | | | | Sep-94 | BC | <200 | <50 | | | | | | | | | CLS | 100 (D) | <50 (D) | | | | | | | | Dec-94 | BC | | | | 470 | | | | | | | | | | | (Diesel) | | | | | | Mar-95 | AEN | | | | 1100 (a) | | | | | | | | | | | (Diesel/Kerosene) | | | | | | | | | | | 1100 (a) (D) | | | | | | | | | | | (Diesel/Kerosene) | | | | | | Jun-95 | AEN | 780 | <50 | | | | | | | | | BC | 650 (D) | <50 (D) | | | | | | | | | | 530 | <50 | | | | | | | | | AEN | 700 (S) | <50 (S) | | | | | | | | Aug-95 | BC | <200 | <50 | | | | | | • | | | | | <50 (D) | | | | | | | | Dec-95 | BC | 560 | . 53 | | | | | | | | | AEN |] | 70 (D) | | | 1 | | | | | | | | 70 (S) | · | | | | | | | Mar-96 BC 290 54 | | | | | | | | | | | | | | 63 (S) | | | | | | | | Jun-96 | CLS | <50 | <50 | | | | | | | | | | | <50 (D) | | | | | | | | Aug-96 | BC | 730 | <50 | | 1 | | | | | | | | | <50 (D) | | | | | | | | Dec-96 | BC | 510 | <50 | | | | | | | • | | | 450 (S) | 52 (S) | | | | | | | | Mar-97 | ВС | 350 | 50 | | | | | | | | | | 350 (S) | 50 (S) | | | | | | | | Jun-97 | ВС | 390 | <50 | | | | | | | | | | | 56 (S) | | | | | | | | Aug-97 | BC | 230 | <50 | | | | | | | | | | | <50 (D) | No. | | | | | | | Feb-98 | BC | 440 | 75 | | | | | | | | Sep-98 | BC | 360^ | 63 | | | | | | | | Feb-99 | BC | 540 | 160 | | | | | | | | Sep-99 | BC | 540 | 67 | | | | | | | | Feb-00 | BC | 480* | 50* | | | | | | 4 | 76-93-6 | Nov-95 | BC | | | | 98 | | | | | | | | | | | (Diesel) | | | | | | Feb-96 | BC | | | | 80 | | | 1 | | | 1 | | | j | | (Diesel) | | # Table C4.4-1 Groundwater Monitoring Well Results Concentrations of Total Petroleum Hydrocarbons and Oil & Grease (Concentrations in μg/L) | RFI Unit | Area | Well No. | Date | Lab | TPH-Diesel | TPH-Gasoline | TPH-Kerosene | TPH-FI | Oil & Grease | |----------|------|----------|----------|-----|--------------|----------------|--------------|-------------------|--------------| | THITOIR | | 76-93-6 | Jun-96 | BC | 11 11 Dicaci | Tr Tr Gasonine | TTTTTCTCGCTC | 570 | Oil & dicase | | | 4 | 70-93-0 | Jun-96 | ь | | | |
(Crude/Waste Oil) | : | | | | | | | | | | 230 (S) | | | | | | | | | | | (Crude/Waste Oil) | | | | | | Aug-96 | BC | | | | (Crude/Waste Oil) | | | | | | Aug-96 | ы | | | | ND (D) | | | | | | | | | | | ND (S) | | | | | | Dec-96 | BC | | | | 120 | | | | | | Dec-30 | ы | | | | (Diesel) | | | | | | Feb-97 | BC | <50 | <50 | | (Diesei) | | | | | | 1 60-37 | ш | | <50 (D) | | | | | | | | May-97 | BC | <50 | <50 | | | | | | | | Windy-37 | ш | | <50 (D) | | | | | | | | Jan-98 | BC | <50 | <50 | | | | | | | | Aug-98 | BC | <50 | <50 | | | | | | | | Feb-99 | BC | <50 | <50 | | | | | | | | Sep-99 | BC | <50 | <50 | | | | | | | | Feb-00 | BC | <50 | <50 | | | | | SWMU 4-3 | 4 | 76-93-7 | Aug-94 | BC | <200 | <50 | • | | <1000 | | AOC 4-1, | | | Dec-94 | BC | | | | ND ND | | | AOC 4-2 | | | Mar-95 | BC | | | | ND | | | | | | Jun-95 | BC | | | | ND | | | | | | Aug-95 | BC | | | | ND | | | | | | | AEN | 1 | | | <50 (b) (D) | | | | | | Dec-95 | ВС | <50 | <50 | | | | | | | | Feb-96 | BC | | <50 | | | | | | | | | | | <50 (D) | | | | | | | | Jun-96 | CLS | <50 ⋅ | | | | | | | | | Aug-96 | BC | <50 | <50 | | | | | | | | | | | <50 (D) | | | | | | | | Dec-96 | BC | <200 | <50 | | | | | | | | Mar-97 | BC | <50 | <50 | | | | | | | | Jun-97 | BC | <5.0 | <50 | | | | | | | | Aug-97 | BC | <50 | <50 | | | | | | | | | | | <50 (S) | | | | | | | | Feb-98 | BC | <50 ⊨ | <50 | | | | | | | | Aug-98 | BC | 190 | <50 | | | | | | | | Jan-99 | BC | <50 | <50 | | | | | | | | Aug-99 | BC | 110 | <50 | | | | | | | | Feb-00 | BC | <200 | <50 | | | | | AOC 5-4 | 5 | 77-94-5 | Jun-94 | BC | <200 | | | | | | | | 77-94-6 | Jun-94 | BC | <200 | | | | | #### Table C4.4-1 # Groundwater Monitoring Well Results Concentrations of Total Petroleum Hydrocarbons and Oil & Grease (Concentrations in µg/L) | RFI Unit | Area | Well No. | Date | Lab | TPH-Diesel | TPH-Gasoline | TPH-Kerosene | TPH-FI | Oil & Grease | |----------|------|----------|--------|-----|------------|--------------|--------------|--------|--------------| | | 5 | 77-92-10 | Mar-97 | BC | <50 | | | | 7 | | | | | Feb-98 | BC | <50 | | | | 1 | | | | | Feb-99 | BC | <50 | | | | | | Temporary | Wells | and Bo | orings | |-----------|-------|--------|--------| |-----------|-------|--------|--------| | | | is and bennigs | 1 | | 1 | I | | | |----------|---|----------------|--------|----|-----|-------------|---------------------------------------|---| | SWMU 4-3 | 4 | SB76-95-3 | Jun-95 | BC | | 730 | 790
(Gasoline)
1500
(Diesel) | | | | 4 | W76-97-3 | Feb-97 | BC | 210 | ≥ 50 | | | | | | | Jun-97 | BC | 980 | <50 | | | | | | , | Mar-98 | BC | 390 | <50 | | | | | | , i | Mar-99 | BC | 190 | <50 | | | | | | | Oct-99 | BC | 210 | <50 | | | | | | | Mar-00 | BC | 590 | <50 | | | | | 4 | W76-97-4 | Feb-97 | BC | 460 | <50 | | | | | | | Jun-97 | BC | 340 | <50 | | | | | | | Mar-98 | BC | 390 | <50 | | | | , | | | Mar-99 | BC | 500 | <50 | | | | 1 | | | Oct-99 | BC | 210 | <50 | | | | | , | | Mar-00 | BC | 740 | <50 | | | | | 4 | W76-97-5 | Feb-97 | BC | <50 | <50 | | • | | | | | Jun-97 | BC | <50 | <50 | | | | | | B. | Mar-98 | BC | <50 | <50 | | | | | | | Mar-99 | BC | <50 | <50 | | | | | | | Oct-99 | BC | <50 | <50 | | | | | | | Mar-00 | ВС | 76 | <50 | | | | Slope | Stability | Wells | |-------|-----------|-------| |-------|-----------|-------| | _ | Sinhe star | unity v | VEIIS | | | | | | |---|------------|---------|-----------|--------|----|-----|-----|--| | | | 3 | SSW19-130 | May-94 | BC | <50 | ND: | | = = = Not Sampled = Constituent not detected above reporting limit = All target analytes not detected above reporting limit TPH-FI - TPH-Fuel Identification - (D) = Duplicate sample - (G) = Grab sample - (S) = Split sample - (a) Analysis for extractable range hydrocarbons, by American Environmental Network - (b) Analysis for fuel scan by American Environmental Network, included Diesel, Kerosene, and Motor Oil Analysis for TPH-FI by BC Laboratories included: Light Naptha, Aviation Fuel, Stoddard/White Spirits, Heavy Naptha/Ligroin/ Petroleum Benzin, Gasoline, JP4, JP5, JP8, Kerosene/Jet Fuel, Diesel, Crude/Waste Oil, Hydraulic/Motor Oil, and WD-40 - Temperature of samples was out of acceptable range when received by the laboratory - ^ Equipment/Rinse Blank contained 93 μg/L diesel # Table C4.4-2 Groundwater Monitoring Well Results Semi-Volatile Organic Compounds (Concentrations in μg/L) | Area | Well No. | Lab | Date | 8270 | |------|-----------|-----|----------|--| | 3 | MW91-3 | BC | Aug-94 | Bis(2-ethylhexyl)phthalate = 12 | | | MW91-4 | BC | Aug-94 | Bis(2-ethylhexyl)phthalate = 42 | | | MW91-5 | BC | Aug-94 | ND | | | MW91-6 | BC | Aug-94 | Bis(2-ethylhexyl)phthalate = 6 | | | 69A-92-22 | BC | Aug-94 | Bis(2-ethylhexyl)phthalate = 55 | | | 75-92-23 | BC | Sep-94 | ND | | | 75B-92-24 | BC | Aug-94 | ND | | | 75-96-20 | BC | Mar-97 | ND hrands a said and a said and a said and a said and a said and a said a said and a said a said a said a said | | | 70 00 20 | CLS | mai o | ND (D) | | 4 | MW76-1 | BC | Sep-94 | ND / | | ' | | AEN | , OOP 0. | ND (D) | | | 76-92-25 | BC | Aug-94 | ND / | | | 76-93-6 | BC | Aug-94 | Bis(2-ethylhexyl)phthalate = 6 | | | 76-93-7 | BC | Aug-94 | ND | | 5 | MW91-1 | ВС | Aug-94 | Bis(2-ethylhexyl)phthalate = 4 | | | MW91-2 | BC | Sep-94 | nice and the second ND | | | MWP-9 | BC | Aug-94 | ND WELL STORY | | | MWP-10 | ВС | Aug-94 | ND | | | 77-92-10 | ВС | Aug-94 | Bis(2-ethylhexyl)phthalate = 3 | | | 61-92-12 | ВС | Sep-94 | Bis(2-ethylhexyl)phthalate = 2.2 | | | 77-93-8 | BC | Aug-94 | ND ND | | | 77-94-5 | ВС | Sep-94 | ND | | | 77-94-6 | BC | Sep-94 | ND. | AEN = Analysis by American Environmental Network BC = Analysis by BC Laboratories CLS = Analysis by California Laboratory Services (D) = Duplicate sample ND = All target analytes not detected above reporting limit ### **Table C4.4-3** ## Polychlorinated Biphenyls (PCBs) Groundwater Monitoring Wells and Temporary Groundwater Sampling Points #### (Concentrations in µg/L) | Area | Well No. | Lab | Date | PCBs (8080) | | | | |--------|-------------------------|---|---------|---|--|--|--| | Ground | dwater Monitoring Wells | | | | | | | | 3 | 69A-92-22 | BC | Apr-00 | <0.2 | | | | | | 75-96-20 | BC | Nov-98 | <0.2 | | | | | | | BC | Apr-99* | <0.2 | | | | | | 75-98-14 | BC | Apr-99* | <0.2 | | | | | | | _BC | Jul-99 | <0.2 mm | | | | | | | BC | Nov-99 | <0.2 | | | | | | | BC | Feb-00 | <0/2 | | | | | | | BC | May-00 | <0.2 | | | | | | 75-98-15 | BC | Apr-99 | <0.2 | | | | | | | BC | Nov-99 | <0.2 | | | | | | | BC | Feb-00 | <0.2 | | | | | | | -98-15 BC Apr-99 <0: BC Nov-99 <0: BC Feb-00 <0: BC May-00 <0: -99-4 BC Jul-99* <0: COL-99 <0: | | | | | | | | 75-99-4 | BC | Jul-99* | <0.2 | | | | | | | _BC | Oct-99 | <0.2 | | | | | | | BC | Nov-99 | <0.2 | | | | | • | | BC | Feb-00 | <0.2† | | | | | | | BC | May-00 | <0.2 | | | | | | 75-99-6 | BC | Jan-00 | <0.2 | | | | | | | BC | May-00 | <0.2 | | | | | | 75-99-7 | BC | Dec-99 | <0.2 | | | | | , | | BC | Feb-00 | <0.2† | | | | | | | BC | May-00 | <0.2 | | | | | | 75-99-8 | BC | Jan-00 | <0.2 | | | | | | | BC | May-00 | <0.2 | | | | = Not detected above reporting limit (reporting limit shown) BC = Analysis by BC Laboratories ^{* =} Grab sample ^{† -} Temperature of sample was out of acceptable range when received by the laboratory Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | _ | | Sb | As | Ва | Be | Cd | Cr | Cr6 | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | v | Zn | |------|-----------|------|----------|------|-------|-------|---------------|------------|---------------|-----|-----------|-----------------|----------|------------|----------|------------|---------|---------|-------|-------|----------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | 15 (b) | 2 | NS | 100 | 50 | 100 (a) | 2 | NS | 5000 (a) | | AREA | WELL NO. | LAB | DATE | 3 | MW91-3 | LBNL | Nov-92 | 3 4 | <5.6 | 140 | <0.7 | <6.6 | 4.1 | | <6.6 | 3.5 | <6.2 | | <12.2 | <8 | <0.2 | <0.9 | <19 | <6.7 | <7.7 | | | | LBNL | May-93 | <10 | <33.5 | 180 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | <2 | 240 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <10 | <10 | <100 | <10 | <10 | | | MW91-4 | LBNL | Dec-92 | <2 | <5.6 | 130 | <0.7 | <6.6 | 5.3 | | <6.6 | 4.6 | <6.2 | | 130 | -8 | <0.2 | <0.9 | <19 | <6.7 | <7.7 | | | | LBNL | Jul-93 | 40 | <33.5 | 260 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | 140 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | 4 | 300 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | 110 | <50 | <2 | <10 | <100 | <10 | <10 | | | | BC | May-95 | <4 | 4 | 259 | <10 | ₹ 5 | <10 | | <10 | <10 | <5 | <0.2 | 100 | <50 | <2 | <10 | <5 | <50 | <50 | | | | LBNL | Mar-96 | <50 | 8.7 | 318 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.2 | 145 | <50 | <1 | <50 | <50 | <50 | <20 | | | | CLS | Jun-96 | | | | <0.5 | <5 | | | | | | | | | *** | - | <1 | | | | | | LBNL | Jun-97 | <4 | 4.8 | 158 | <4 | <5 | <5 | | <5 | <5 | <5 | <0,2 | 89 | <50 | <2 | <5 | <1 | <5 | <20 | | | | BC | Jun-98 | | | | | | | | | | <u> </u> | | 120 | | | | | | | | | | LBNL | Jun-99 | | | | | | | | | | | | 90.9 | | | | | | | | | MW91-5 | LBNL | Nov-92 | 29 | <5.6 | 54 | <0.7 | <6.6 | 5.4 | | <6.6 | 6 | <6.2 | | <12.2 | <8 | 3.1 | <0.9 | <19 | <6.7 | 151 | | | | LBNL | Jun-93 | <10 | <33.5 | 65 | <4.5 | <9 | <7 | | <20.5 | 8 | <43.5 | <0.1 | <16.5 | <61 | 3.6 | <12.5 | <98.5 | <24.5 | 18 | | | | BC | Mar-94 | <100 | <10 | 51 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <10 | <10 | <100 | 12 | <10 | | ΙГ | MW91-6 | | Feb-92 | <20 | <20 | 36 | <1 | <5 | <10 | | <5 | <40 | <20 |
<0.3 | <10 | 20 | <20 | <5 | <100 | <5 | 8 | | | | LBNL | Dec-92 | <2 | <5.6 | 25 | <0.7 | <6.6 | 4.8 | | <6.6 | 2.1 | <6.2 | | <12.2 | <u>-</u> 0 | <0.2 | <0.9 | <19 | <6.7 | 112 | | | | LBNL | May-93 | <10 | <33.5 | 30 | <4.5 | <9 | < 7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | <10 | 44 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <10 | <10 | <100 | <10 | <10 | | Ī | 69A-92-22 | BC | Mar-94 | | | 70 | elitarii peta | | Marty (inc. | | grediteit | Logrande (1945) | | Min. e Tab | Arts day | 55 | 41 A.E. | 34 - | | | | | | | | IVIAI-94 | <100 | <10 | 70 | <10 | <10 | <10 | | <50 | <10 | <50 | ે <0.2` | <50 | <50 | <10 | <20 | <100 | <10 | <10 | | | 75-92-23 | LBNL | Sep-92 | <150 | <60 | <70 | <10 | <70 | <10 | | <70 | <10 | <60 | | <120 | <60 | <0.2 | <10 | <190 | <70 | <10 | | | | С | Sep-92 | <20 | <5 | 90 | <1 | 650 | 10 | | <10 | 110 | <10 | <1 | <5 | <20 | 20 | ₹5 | <10 | <10 | 90 | | | | LBNL | Nov-92 | <2 | <5.6 | 38 | <0.7 | <6.6 | 8.8 | | <6.6 | 4.2 | <6.2 | | <12.2 | <8 | <0.2 | <0.9 | <19 | <6.7 | 86 | | | | С | Nov-92 | <20 | <5 | 40 | <1 | <1 | <10 | | <10 | <5 | <10 | <1 | <5 | <20 | <10 | <5 | 200 | <10 | 6 | | | | LBNL | Dec-92 | <2 | <5.6 | <6.5 | <0.7 | <6.6 | <0.4 | | <6.6 | <0.2 | <6.2 | 31 | <12.2 | <8 | 1.1 | <0.9 | <19 | <6.7 | <7.7 | | | | LBNL | Jun-93 | <10 | <33.5 | <25.5 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | <10 | 23 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <10 | <10 | <100 | 17 | <10 | Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Co | Cu | Pb | Hg | Mo | Ni | Se | Ag | Ti | ٧ | Zn | |----------|-----------|------|--------|------------|------|------|--------------|-------------|-------------------|-----|------|------------|------------|------------------|----------------|------|------|------------|--------|---------------|----------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | 15 (b) | 2 | NS | 100 | 50 | 100 (a) | 2 | NS . | 5000 (a) | | AREA | WELL NO. | LAB | DATE | | | | | | lor 10, 10 111 11 | 1 | F : | | | | | | | | | | | | 3 | 75B-92-24 | С | Oct-92 | <20 | <5 | 28 | 1 | <1 | <10 | | <10 | <5 | <10 | <1 | 20 | <20 | 40 | <5 | <10 | <10 | 6 | | | | LBNL | Oct-92 | <2 | <5.6 | <6.5 | <0.7 | <6.6 | <0.4 | | <6.6 | <0.2 | <6.2 | | <12.2 | <8 | <2 | <0.9 | <19 | <6.7 | <7.7 | | | | BC | Mar-94 | <100 | | 110 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <1 | <20 | <100 | <10 | <10 | | | 75-96-20 | BC | Mar-97 | <4 | <2 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | | | | CLS | Mar-97 | <500 | <50 | <500 | <50 | <100 | <500 | | <500 | <500 | <500 | <5 | <500 | <500 | <50 | <500 | <50 | <500 | <500 | | | | LBNL | Jun-97 | <4 | 3.3 | <50 | <4 | <5∷ | <5 | | <5 | 8.1 | <5 | <0.2 | 58 | <50 | <2 | <5 | <1 | <5 | <20 | | | | BC | Jun-97 | <4 | 5.3 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <1.0 | <1 | <10 | <50 | | | | BC | May-98 | <100 | 3.5 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | | | | LBNL | May-99 | <1 | 13.9 | 52.7 | ેરા | <1 | 1.1 | | <1 | <1 | <1 | <0.2 | 28.1 | 1.7 | <2 | <1 | <1. | 4.3 | <5 | | | 75-97-5 | LBNL | Aug-98 | ~1 | <2 | 182 | <1 | <1 | <1 | | €1 | 2.2 | <3 | <0.2 | 4.8 | <10 | <2 | <1 | <1 | 2.7 | 6.9 | | | | BC | Aug-98 | <100 | <2 | 222 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | < 50 | <50 | <2 | <10 | <1 | <10 | <50 | | <u>[</u> | | LBNL | May-99 | ં <1 | 4.6 | 650 | . e1 | <1 | 2.1 | | 1.0 | × 1 | <1 | <0.2 | 3.2 | 5.9 | <2 | <1 | <1 | <1 | 7.4 | | | 75-97-6 | LBNL | Aug-97 | <4 | 2.3 | <50 | <4 | <5 | <5 | | <5 | <5 | <5 | <0.2 | <50 | <50 | 2.2 | <5 | · <1 | < 5 | <20 | | | | BC | Aug-97 | <100 | 3.1 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | 2.1 | <10 | <1 | <10 | <50 | | | | LBNL | May-98 | <1 | 5.7 | 26.3 | <1 | <1 | 11.9 | | 1.0 | 1.4 | ۲- | <0.2 | 6.8 | <1 | 7.4 | <1 | <1 | 8.0 | <5 | | | | LBNL | May-99 | <1 | 7.4 | 25.1 | <1 | <1 | 41 | | <1 | 2.1 | ্ব | <0.2 | 5.0 | 3.1 | <2 | · <1 | <1 | 8.8 | <5 | | | 75-97-7 | LBNL | Jul-97 | · · <4 | 3.0 | <50 | <4 | <5 | <5 | | <5 | <5 | <5 | <0.2 | <50 | <50 | <2 | <5 | <5 | <5 | <20 | | | | BC | Jul-97 | <100 | 5.3 | <100 | <10 | <10 | <10 | | <50 | <10 | ۸ | ે <0.2 | <50 | <50 | <2 | <10 | ۲۷ | <10 | <50 | | | | LBNL | May-98 | <1 | 11.3 | 20.1 | -<1 | <1 | 8.0 | | <1 | 2.1 | <1 | ∛ <0.2 | 8.2 | 3.5 | 13.9 | <1 | <1 | 3.3 | <5 | | | | LBNL | May-99 | v 1 | 12.2 | 33.4 | <1 | <1 | 4 | | <1 | <1 | <1 | <0.2 | 6.3 | 10.7 | <2 | <1 | · <1 · | <1 | <5 | | | 69-97-8 | LBNL | Jul-98 | <1 | 2.2 | 404 | <1 | <1 | 23.8 | | 4.5 | 6.5 | <1 | | 3.2 | 25.9 | <2 | <1 | <1 | 9.5 | 15.8 | | | | BC | Jul-98 | <100 | 2.1 | 442 | <10 | <10 | <10 | | <50 | 14 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | | | | LBNL | May-99 | <1 | 3.9 | 553 | 21 | // / | 1.8 | | 4.1 | 4.1 | ~ 1 | <0.2 | 2.1 | 1.7 | <2 | × 1 | <1 | 1.3 | 7.0 | | | 69-97-21 | LBNL | Маг-98 | <1 | 20.7 | 40.8 | 1.3 | <1 | 10.4 | | <1 | 3.7 | 9.2 | <0.2 | 8.7 | <1 | 145 | ~ 1 | 1.5 | 6.0 | 14.7 | | | | ВС | Mar-98 | <4 | <2 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | 160 | <10 | <1 | <10 | 14 | | | | LBNL | Apr-98 | <1 | 9.6 | 38.2 | <1 | <1 | 6.6 | | <1 | <1 | 3.2 | <0.2 | 6.5 | <1 | 45.6 | <1 | <1 | 6.7 | 6.6 | | | | ВС | Jun-98 | <100 | 4.2 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | 72 | <10 | <10 | <10 | <10 | | | | LBNL | May-99 | <1 | 9,9 | 29.0 | <1 | <1 | <1 | | <1 | <1 | <1 | <0.2 | 5.8 | 2.0 | 46.8 | <1 | <1 | 5.7 | <5 | Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | | • | Sb | As | Ba | Be | Cd | Cr | C16 | Co | Cu , | Pb | Hg | Mo | Ni | Se | Ag | TI | ν | Zn | |------|----------|------|--------|------|-------|-------|---------------------------------------|--------------|------------|-----|------------|------------|---------------|----------|-------|--|-------------|------------|--|-------------|----------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | | 15 (b) | 2 | NS | 100 | 50 | 100 (a) | 2 | NS | 5000 (a) | | AREA | WELL NO. | LAB | DATE | | , | , | | | | | | | | | | | | | | | | | 3 | 75-98-14 | LBNL | Jul-99 | <1 | 12.1 | 20.5 | <1 | <1 | 9.1 | | <1 | 2,7 | <1 | <0.2 | 16.9 | 4.7 | 23.1 | <1 | <1 | 28.5 | <5 | | | | BC | Jul-99 | <1 | <50 | <100 | ્રા | <1 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <100 | <10 | <1 | 20 | <10 | | | 75-98-15 | LBNL | Mar-99 | 41 | 35.1 | 37.7 | <1 | | 5.0 | | <1 | 2.2 | <1 | <0.25 | 107 | <1 | 2.7 | <1 | <1 | 10.9 | 7.0 | | | | BC | Mar-99 | <1 | <50 × | <100 | <1 | 41 | <10 | | <50 | <1.0 | <5 | <0.2 | 102 | <50 | <100 | <10 | <1 | 13 | <50 | | [| 75-99-4 | LBNL | Oct-99 | <1 | 34.9 | 12.5 | ::::::::::::::::::::::::::::::::::::: | . | 3.4 | | <1 | ~ 1 | <1 | <0.2 | 162 | 1.0 | 4.6 | <1 | <1 | 65.4 | <5 | | | | BC | Oct-99 | <4 | 32.0 | <100 | <0.2 | <1 | <10 | | <50 | <10° | <5 | 0.27 | 150 | <50 | 3.2 | <10 | <1 · | 49 | <50 | | | 75-99-6 | LBNL | Feb-00 | <2 | 17.7 | 3.5 | ~ 1 | / c2 | 6.3 | | c1 | 21 | <1 | <0.2 | 97.7 | <1 | 7.1 | <1 | - <1 · | 14.4 | <5 | | | | BC | Feb-00 | <4 | 20.0 | <100 | <0.2 | v | <10 | | <50 | <10 | <5 | <0.2 | 90 | <10 | 6.6 | <10 | <1 | 10 | <10 | | [| 75-99-7 | LBNL | Dec-99 | 4 | 6.1 | 48.7 | e i | \$245 (SE) | <5 | | ~ 1 | 8.0 | 1.4 | <0.2 | 5.3 | 4.5 | <2 | <1 | <1 | 5.1 | 11.5 | | | | BC | Dec-99 | <4 | 2.2 | <100 | <0.2 | <1.4 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | | [| 75-99-8 | LBNL | Feb-00 | <1 | 52.0 | <1 | <1 | <2 | « 1 | | <1 | ~ 1 | <1 | <0.2 | 140 | <1 | 2.4 | <1 | <1 | 26.2 | <5 | | | | BC | Feb-00 | <4 | 57.0 | <100 | <0.2 | <1 | <10 | • | <50 | <10 | <5 | <0.2 | 140 | <10 | 2.0 | <10 | <1 | 20.0 | <50 | | 4 | MW76-1 | С | Sep-92 | <20 | <5 | 100 | <1 | <1 | <10 | | <10 | <5 | <10 | <1 | 30 | <20 | -10 | | .40 | 40 | 34 | | 1 1 | 14111111 | LBNL | Dec-92 | <2 | <5.6 | 190 | <0.7 | <6.6 | 2.6 | | <6.6 | 2.8 | <6.2 | .*:.:<-! | <12.2 | <20
<8 | <10
<0.2 | <5
<0.9 | <10 | <10
<6.7 | 117 | | | | LBNL | May-93 | <1.0 | <33.5 | 220 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | | 330 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | . <50 | <50 | <1 | <20 | <100 | <10 | 16 | | | | BC | Jun-95 | <4 | <2 | 102 | <10 | <5 | <10 | | <10 | 14 | <5 | <0.2 | <10 | <50 | <2 | <10 | <5 | <50 | <50 | | | | BC | Jun-95 | <4 | <2 | 260 | <10 | <5 | <10 | | <10 | <10 | < 5 | <0.2 | <10 | <50 | <2 | <10 | <5 | <50 | <50 | | | | AEN | Jun-95 | <20 | 4 | 290 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.2 | <10 | ,
<10 | <4 | <5 | <50 | <5 | 30 | | | | AEN | Jun-95 | <20 | <2 | 290 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.2 | <10 | <10 | <4 | × 5 | <50 | v 5 | 30 | | | | LBNL | Jun-97 | <4 | <2 | 339 | <4 | <5 | <5 | | <5 | 5.8 | <5 | <0.2 | <50 | <50 | <2 | <5 | <1 | <5 | <20 | | | | LBNL | Sep-98 | ્રા | 2.1 | 355 | <1 | ₹ 1 | 32.2 | | 1.1 | 3.3 | ۲- | <0.2 | 1.1 | 7.9 | <2 | <1 | <1 | 12.4 | 48 | | | | LBNL | Sep-99 | | | | | | <1 | | | | | • | | 5.4 | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ···· | | | | 76-92-25 | LBNL | Dec-92 | <2 | <5.6 | <6.5 | <0.7 | <6.6 | <0.4 | | <6.6 | <0.2 | <6.2 | | <12.2 | <b< td=""><td>3.1</td><td><0.9</td><td><19</td><td><6.7</td><td><7.7</td></b<> | 3.1 | <0.9 | <19 | <6.7 | <7.7 | | | | LBNL | Jun-93 | <10 | <33.5 | <25.5 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | 90 | <61 |
1.7 | <12.5 | <98.5 | <24.5 | <16.5 | | [| | BC | Mar-94 | <100 | 17 | <10 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | 70 | <50 | <2 | <20 | <100 | <10 | <10 | | | 76-93-6 | BC | Oct-93 | <100 | 10 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 36 | <50 | <2 | <10 | <5 | <50 | <50 | | | | AEN | Oct-93 | <20 | 11 | 90 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.3 | 30 | <10 | <4 | <5 | <100 | 9 | <5 | | | | BC | Маг-94 | <100 | 12 | 70 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <2 | <20 | <100 | <10 | <10 | ModuleC Water Metals 8/18/00 ## Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | v | Zn | |------|----------|------|--------|----------------------------|------------|-------------|--------------|-----------------|-------------|-----|---------------------------------------|------------|------------------|--------|--------------|------------|----------|------------|-----------|------------|------------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | 0.0 | NS | 1000 (a) | | 2 | NS | 100 | | 100 (a) | 2 | | 5000 (a) | | AREA | WELL NO. | LAB | DATE | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | , | | (-) | | | 10000 (4) | | 4 | 76-93-6 | BC | Jun-95 | : | 68 | <10 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 18 | <50 | <2 | <10 | <5 | <50 | <50 | | | | BC | Feb-96 | <4 | 12 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <5 | <10 | <50 | | | | LBNL | Feb-96 | <50 | 7.7 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | : <0.2 | <50 | <50 | <1 | <50 | <50 | <50 | <20 | | | | CLS | Jun-96 | | | | <0.5 | <5 | | | | | | | | | | | <1 | | | | | | LBNL | May-97 | | 8.4 | LBNL | Aug-98 | | 9.8 | | | | | | | | | | | | | | | | | | [| 76-93-7 | ВС | Jan-94 | <100 | 24 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 57 | <50 | 4.6 | .40 | | | | | | | AEN | Jan-94 | <20 | 27 | 80 | <2 | | <10 | | <5 | <10 | <40 | <0.2 | 70 | <10 | <4 | <10 | <5 | <50 | <10 | | | | BC | Jun-95 | <4 | 15 | <100 | <1.0 | : <5 | <10 | | <10 | <10 | <5 | <0.2 | 33 | <50 | 3.6 | <5 | <100 | 11 | 10 | | | | LBNL | Feb-96 | <50 | 9.1 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.2 | <50 | <50 | <1 | <10
<50 | <5
<50 | <50 | <50 | | | | CLS | Jun-96 | | | | <0.5 | . < 5 | | | | | | 10.2 | 430 | - 100 | | 230 | <1 | <50 | <20 | | | | LBNL | Jun-97 | | 11.4 | | | | | | | | | | | | | | <u> </u> | | | | | | LBNL | May-99 | | 13.0 | | | | | | | | | | | | | | | | | | | 78-97-20 | LBNL | Oct-97 | De North | | 45.0 | | | | | ्द्र उर | | | | | | | | | | | | | 70-87-20 | BC | Oct-97 | <1 | <2 | 45.8 | <1 | <u>ং ।</u> | . <5 | | <5 | 3.3 | . · <1 | <0.2 | <5 | <5 | 11.4 | <1 | <1 | 5.5 | <5 | | | | LBNL | May-98 | <100 | <2 | <100
100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0,2 | <50 | <50 | 13 | <10 | <1 | <10 | <50 | | | | LBNL | May-99 | <1
<1 | 4.1
2.5 | 106
105 | <1 | <1 | 2.7 | | <1 | 1.6 | <1 | <0.2 | 3.1 | 2.3 | 16.5 | <1 | <1 | 4.7 | <5 | | | | 1 | · · · | Statement garages | 2.5 | 105 | ં <ો ં | <1 | # <1 · | | <1 | € ~<1`~- | <1 | <0.2 | 2.7 | 1.8 | <2 | <1 | <1 | 4.3 | <5 | | | 76-98-21 | LBNL | Jul-99 | <1 | 5.1 | 12.9 | ∞<1 | <1 (| 6.6 | | 5.7 | 2.8 | 1.2 | <0.2 | 5.1 | 4.4 | <2 | <1 | <1 | 8.6 | 8.9 | | | | BC | Jul-99 | <1 | <50 | <100 | <1 | _ <1 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <100 | <10 | <1 | <10 | 12 | | | 76-98-22 | LBNL | Jan-99 | 1 1≥1 | 4.7 | 220 | <1 | <1 | 5.1 | | 9.3 | 4.6 | <1 | <0.2 | 77.4 | 4.2 | 5.3 | <1 | <1 | 6.3 | 8.8 | | | | BC | Jan-99 | <1 | <50 | 120 | <1 | <1 | v 10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <100 | <10 | <1 | <10 | <50 | | 5 | MW91-1 | LBNL | Nov-92 | 12 | <5.6 | 53 | <0.7 | <6.6 | 3 | | <6.6 | 2 | <6.2 | | 66 | | | | | | | | | | LBNL | May-93 | <10 | <33.5 | 50 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | | <8 | <0.2 | <0.9 | <19 | <6.7 | 120 | | | | BC | Mar-94 | <100 | 8 | 50 | <10 | <10 | <10 | | <50 | <10
<10 | <50 | <0.1 | <16.5
<50 | <61
<50 | <1
<2 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | May-95 | <4 | 9.4 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 34 | <50 | 3.6 | <20
<10 | <100 | <10 | <10 | | | | LBNL | Mar-96 | <50 | 2.7 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.2 | <50 | <50 | <1 | <50 | <5
<50 | <50
<50 | <50
<20 | | | | as | Jun-96 | | | | <0.5 | <5 | ST PSIJER | | | | | | 755 | | | 130 | <1 | <u> </u> | 220 | | | | LBNL | Jun-97 | <4 | 6.0 | 56 | <4 | <5 | <5 | | <5 | 5.1 | <5 | <0.2 | <50 | <50 | <2 | <5 | <1 | <5 | 99 | | | | LBNL | May-98 | 21 | 10.5 | 24.2 | <1 | <1 | 2.6 | | 1.3 | 3.2 | <1 | <0.2 | 15.5 | 2.5 | 4.7 | <1 | <1 | 3.1 | 12.1 | | | | , | | and a second second second | | | | | | | | | | | , , | | | ~ . | . ~ ! | | | Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Co | Cu | Pb | Hg | Mo | Ni | Se | Ag | TI | V | Zn | |------|----------|--------|------------------|----------|--------------|-----------------|-----------------|-------------|---------------|-----|---------------|----------------|----------------|--------|----------------|------------|-----------|---------|----------|-------|--------------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | | 2 | NS | 100 | 50 | 100 (a) | | | 5000 (a) | | AREA | WELL NO. | LAB | DATE | <u> </u> | | | | | | | | | | | | | | | | | 3-7 | | 5 | MW91-2 | LBNL | Dec-92 | <2 | <5.6 | 327 | <0.7 | <6.6 | 3.7 | | <6.6 | 3.3 | <6.2 | | <12.2 | <8 | <0.2 | <0.9 | <19 | <6.7 | 125 | | | | LBNL | Jun-93 | <10 | <33.5 | 420 | <4.5 | √9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | <2 | 330 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <2 | <20 | <100 | <10 | 20 | | | MWP-9 | LBNL | Nov-92 | 30 | <5.6 | 72 | <0.7 | <6.6 | 5.3 | | <6.6 | 64 | <6.2 | | <12.2 | <8 | 1.9 | <0.9 | <19 | <6.7 | | | | • | LBNL | May-93 | <10 | <33.5 | 90 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | <1 | <12.5 | <98.5 | <24.5 | <7.7 | | | | BC | Mar-94 | <100 | 1 | 110 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <1 | <20 | <100 | <10 | <16.5
<10 | | | | BC | May-95 | <4 | <2 | 102 | <10 | <5 | <10 | | <10 | <10 | < 5 | <0.2 | <10 | <50 | <2 | <10 | <5 | <50 | <50 | | | | LBNL | Feb-96 | <50 | <2 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.2 | <50 | <50 | <1 | <50 | <50 | <50 | <20 | | | | cls | May-96 | | | | <0.5 | <5 | | | | | | | | | | | <1 | - 230 | - 20 | | | | LBNL | May-97 | <4 | <2 | 184 | <4 | <5. | ं<5 | | < 5 | <5 | <5 | <0.2 | <50 | <50 | <2 | <5 | <1 | <5 | <20 | | | MWP-10 | LBNL | Nov-92 | 40 | <5.6 | 29 | <0.7 | <6.6 | <0.4 | | <6.6 | 3.3 | <6.2 | | 400 | | | | | | · | | | | LBNL | May-93 | <10 | <33.5 | 20 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <12.2
<16.5 | <8 | _<0.2 | <0.9 | <19 | <6.7 | <7.7 | | | | BC | Mar-94 | <100 | <10 | 22 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <61
<50 | <1 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | May-95 | <4 | 7.8 | <100 | <10 | ~ 5 | <10 | | <10 | <10 | <5 | <0.2 | <10 | <50
<50 | <10
<2 | <10 | <100 | <10 | <10 | | | | LBNL | Feb-96 | <50 | <2 ×2 | <50 | . < 5 | <40 | < 5 0 | | <50 | <50 | <40 | <0.2 | <50 | <50
<50 | <1 | <10 | <5 | <50 | <10 | | | | cls | May-96 | | | | <0.5 | <5 | | | | | | . 40.2 | | <50 | <u> </u> | <50 | <50 | <50 | <20 | | | | LBNL | May-97 | <4 | 3.9 | <50 | <4 | <5. | < 5 | | <5 | <5 | <5 | <0.2 | <50 | <50 | <2 | <5 | <1
<1 | | | | | 77-92-10 | LBNL | Jan-93 | <10 | | 100 | 14 15 15 | SAMEAN. | -3 -07 - 3 | | The second | ential reserva | 86.1 5 7 1 | | | 730 | | 45 | < 1 | <5 | <20 | | | 77-32-10 | LBNL | Jun-93 | <10 | <33.5 | 120
31 | <4.5
<4.5 | <9 | <7. | | <20.5 | <5.5 | <43.5 | si . | 280 | <61. | 4.6 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Mar-94 | <100 | <33.5
3.8 | 60 | Ayrosan kasa | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | 4.4 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | May-95 | <4 | 35 | eg pilosieránas | <10 | <10
- | <10 | | <50 | <10 | <50 | <0.2 | 240 | <50 | 5 | <20 | <100 | 20 | <10 | | | | LBNL | Mar-96 | <50 | 49.3 | <100
68 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 230 | <50 | 8 | <10 | <5 | <50 | <50 | | | | CLS | Jun-96 | | 73.0 | - 00 | <5
<0.5 | <40
<5 | <50 | | <50 | <50 | <40 | <0.2 | 250 | <50 | <1 | <50 | <50 | <50 | <20 | | | | LBNL | May-97 | <4 | 6.9 | <50 | <4 | <5 | <5 | | <5 | <5 | 9 2 <u>2</u> 8 | | 000 | | | | <1 | | | | | | LBNL | Aug-98 | | 30 | ~30 | | | | - | <5 | <5 | <5 | <0.2 | 292 | <50 | 6.9 | <5 | <1 | <5 | <20 | | | | LBNL | Aug-99 | | 31.1 | | | | | | | | | | 240
210 | | | | | | | | Ī | 61-00-10 | I DAII | | | 21 Jan 200 | | | Se signe of | t | | !
 | | | 1 | 210 | L | | | | | | | | 61-92-12 | LBNL | Jan-93 | <10 | <33.5 | 41 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | | <16.5 | <61 | 1.6 | <12.5 | <98.5 | <24.5 | <16.5 | | | | BC | Jun-93
Mar-94 | <10 | <33.5
5 2 | 50 | <4.5 | <9 | <7 | | <20.5 | <5.5 | <43.5 | <0.1 | <16.5 | <61 | 3.6 | <12.5 | <98.5 | <24.5 | <16.5 | | | • | BC | | <100 | | 20 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | 140 | <50 | <10 | <20 | <100 | 20 | <10 | | L | | ir | Jun-95 | <4 | 23 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 210 | <50 | <2 | <10 | <5 | <50 | <50 | ## Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER | | | _ | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Со | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | V | Zn | |------|----------|------|--------|------|------|------|-----------|--------------------|-----|-----|----------|----------|------------|-------|-------|----------------|-----|---------------|---------|-----|----------| | | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | 15 (b) | 2 | NS | 100 | 50 |
100 (a) | 2 | NS | 5000 (a) | | AREA | WELL NO. | LAB | DATE | | | | Lusgataka | tare de director i | | 1 | | | | | | | | | | | | | 5 | 61-92-12 | cls | Jun-96 | | | | <0.5 | <5 | | | | | | | | | | | <1 | | | | | | LBNL | Jun-97 | <4 | 10.3 | <50 | <4 | <5 | <5 | | <5 | 18.7 | <5 | <0.2 | 230 | <50 | <2 | <5 | <1 | <5 | 34 | | | | LBNL | May-99 | | 11.7 | | | | | | <u> </u> | | | | 130 | | | | | | | | | 77-93-8 | BC | Oct-93 | <100 | <2 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | <10 | <50 | <2 | <10 | <5 | <50 | <50 | | | | AEN | Oct-93 | <20 | 3 | 70 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.3 | <10 | <10 | <4 | · <5 | <100 | <5 | <5 | | | | BC | Mar-94 | <100 | <2 | 70 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <2 | <20 | <100 | <10 | <10 | | | 77-94-5 | AEN | Jun-94 | <20 | 16 | 330 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.2 | 290 | <10 | 89 | <5 | <100 | 5 | 20 | | | | BC | Jun-94 | <100 | 14 | 150 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | 290 | <50 | 94 | <10 | <100 | 10 | <10 | | | | BC | May-95 | <4 | 9.2 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.2 | 140 | <50 | 15 | <10 | <5 | <50 | <50 | | | | AEN | May-95 | <20 | 15 | 30 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.2 | 150 | <10 | 13 | <5 | <50 | 10 | <10 | | | | LBNL | Mar-96 | <50 | 4.1 | <50 | <5 | <40′ | <50 | | <50 | <50 | <40 | <0.2 | 145 | <50 | <1 | <50 | <50 | <50 | <20 | | | | CLS | Jun-96 | | | | <0.5 | <5 | | | | | | | | | | | <1 | | | | | | LBNL | May-97 | <4 | 7.6 | 88 | <4 | <5 | <5 | | <5 | <5 | <5 | <0.2 | 106 | <50 | 2.4 | <5 | <1 | <5 | <20 | | | | LBNL | May-98 | | 14.2 | | | | | | ļ | | | | 191 | | | | | | | | [| | LBNL | May-99 | | 11.2 | | | | | | ļ., | | | | 137 | | | | | | | | | 77-94-6 | AEN | Jun-94 | <20 | 3 | 100 | <2 | <5 | <10 | | <5 | <10 | <40 | <0.2 | <10 | 10 | <4 | <5 | <100 | 5 | <10 | | | | BC | Jun-94 | <100 | <2 | 170 | <10 | <10 | <10 | | <50 | <10 | <50 | <0.2 | <50 | <50 | <2 | <10 | <100 | 10 | <10 | | | | BC | May-95 | <4 | -2 | 110 | <10 | <5 | <10 | | 40 | <10 | \ 5 | <0.2 | <10 | <50 | <2 | <10 | ·
<5 | <50 | <50 | | | | LBNL | Mar-96 | <50 | <2 | 64 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.2 | <50 | <50 | <1 | <50 | <50 | <50 | <20 | | | | CLS | Jun-96 | | | | <0.5 | <5 | | | <u> </u> | | | | | | | | <1 | | | | | 77-97-9 | LBNL | Aug-97 | <4 | <2 | 526 | 6.7 | <5 | <5 | | <5 | <5 | <5 | √<0.2 | <50 | <50 | <2 | <5 | <1 | 5.5 | <20 | | | - | BC | Aug-97 | <100 | 3.6 | 440 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | :.< 5 0 | <2 | <10 | <1° | <10 | <50 | | : | | LBNL | May-98 | <1 | 3.9 | 401 | <1 | <1 | 5.0 | | <1 | 3.1 | <1 | <0.2 | 11.5 | <1 | <2 | <1 | <1 | 5.0 | 6.0 | | | | LBNL | May-99 | <1 | 3.9 | 445 | <1 | <1 | 1.0 | | <1 | 2.7 | <1 | <0.2 | 9.9 | 3.6 | <2 | < 1 | <1 | 4.9 | 5.7 | | | 77-97-11 | LBNL | Jul-97 | <4 | <2 | <50 | <4 | <5 | <5 | | <5 | <5 | <5 | <0.2 | <50 | <50 | <2 | <5 | <5 | <5 | <20 | | | | ВС | Jul-97 | <100 | <2 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | · <50 | <50 | <2 | <10 | <1 | <10 | <50 | | | | LBNL | May-98 | <1 | 4.6 | 42.8 | <1 | <1 | 4.4 | | 1.0 | 4.5 | <1 | <0.2 | 12.6 | 7.0 | <2 | <1 | <1 | 3.8 | 14.5 | | | | LBNL | May-99 | <1 | 3.6 | 41.5 | <1 | <1 | 2.1 | | <1 | 2.6 | <1 | <0.2 | 7.4 | 7.4 | <2 | <1 | <1 | 2.0 | 6.9 | ## Table C4.4-4 CONCENTRATION OF METALS IN GROUNDWATER (Concentrations in µg/L) | | | | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Со | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | V | Zn | |------|----------|------|--------|----|------|------|-----|-----|-----|-----|-----|----------|--------|------|------|-----|------|---------|------|------|----------| | | | I | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | 15 (b) | 2 | NS | 100 | 50 | 100 (a) | 2 | NS | 5000 (a) | | AREA | WELL NO. | LAB | DATE | 5 | 31-97-17 | LBNL | Oct-97 | <1 | 8.3 | 227 | <1 | <1 | <5 | | <5 | <1 | <1 | <0.2 | <5 | 6.0 | 3.3 | <1 | <1 | 4.9 | <5 | | | | BC | Oct-97 | <4 | 5.9 | 288 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | : <2 | <10 | . <1 | <10 | <50 | | | | LBNL | May-98 | <1 | 2.9 | 272 | <1 | <1 | 2.6 | | <1 | 1.1 | <1 | <0.2 | 1.4 | <1 | 7.2 | <1 | <1 | 5.6 | <5 | | | | LBNL | May-99 | ব | 3.4 | 369 | <1 | <1 | <1 | | <1 | 1.6 | <1 | <0.2 | 1.2 | 5.7 | <2 | <1 | <1 | 10.2 | <5 | | | 31-97-18 | LBNL | Oct-97 | <1 | 6.6 | 88.6 | <1 | <1 | <5 | | <5 | <1 | <1 | <0.2 | 6.2 | <5 | <2 | <1 | <1 | 4.0 | <5 | | | | BC | Oct-97 | <4 | 4.3 | 100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | | | | LBNL | May-98 | <1 | 4.9 | 86.1 | <1 | <1 | 1.2 | | <1 | <1 | <1 | <0.2 | 6.7 | <1 | 11 | <1 | <1 | 2.2 | <5 | | | | LBNL | Apr-99 | <1 | 3.4 | 145 | <1 | <1 | 1.5 | | <1 | 1.1 | <1 | <0.2 | 4.4 | <1 | <2 | <1 | <1 | 2.8 | <5 | | | 31-98-17 | LBNL | Jul-99 | ব | 11.2 | 90.7 | <1 | <1 | 7.0 | | <1 | 3.0 | <1 | <0.2 | 10.7 | 2.3 | <2 | <1 | <1 | 11.2 | <5 | | | | BC | Jul-99 | <1 | 16 | 130 | <1 | <1 | <10 | | <50 | <10 | <5 | <0.2 | <50 | <50 | <2 | <10 | <1 | <10 | <50 | MCL: Maximum contaminant level for drinking water (determined by California DTSC) 40 (a): secondary MCL (b): action level NS: Not Specified * = Grab sample = not detected = concentration above MCL = not analyzed AEN = Analysis by American Environmental Network BC = Analysis by BC Analytical laboratory C = Analysis by Chromalab CLS = Analysis by California Laboratory Services LBNL = Analysis by Lawrence Berkeley National Laboratory Q = Analysis by Quanteq # Table C4.5-1 Surface Water Sampling Results Concentrations of Organic Constituents (Concentrations in µg/L) | | | | VOCs | SVOCs | |----------------|---------|------|------------------------|-------| | Location | Date | Lab | 8260 | 625 | | Chicken Creek | Jan-93 | LBNL | ND | | | | Aug-93 | LBNL | ND ND | | | | | С | | ND | | | Mar-94 | LBNL | ND | | | | Jul-94 | LBNL | ND (1997) | | | | Jan-95 | BC | ND | | | | Jul-95 | LBNL | ND | | | | Jan-96 | LBNL | ND | | | | Apr-96# | LBNL | ND | | | | Apr-97 | LBNL | ND | | | | Jan-98 | LBNL | ND | | | | Apr-99 | LBNL | ND | | | | Jan-00 | LBNL | ND | | | No Name Creek | Mar-94 | LBNL | ND | | | | Jul-94 | BC | ND | | | | Jan-95 | BC | ND | | | | Jul-95 | LBNL | ND | 71 | | | Jan-96 | LBNL | ND | , | | | Apr-96# | LBNL | ND | | | | Apr-97 | LBNL | ND |). | | | Jan-98 | LBNL | ND | * | | | Apr-99 | LBNL | ND | | | | Jan-00 | LBNL | ND ND | | | Ten Inch Creek | Jul-95 | LBNL | ND | | | | Apr-96# | LBNL | ND made and the second | | | | Jan-98 | LBNL | ND | | | | Apr-99 | LBNL | ND ND | | | | Jan-00 | LBNL | ND | | | ND | = Not detected above reporting limit (reporting limit varies with analyte) | |----|--| | | = Not analyzed | ^{# -} All April 1996 creek samples missed holding times for 8260 analysis Page 1 ModuleC Surface Water # Table C4.5-2 Sediment Sampling Results (mg/kg) Concentrations of Organic Constituents | | | | | VOCs | SVOCs | TPH-Diesel | TPH-Gas | PAH | PCBs | Pesticides & PCBs | |-------------------------------|---------------------|--------|-----|---------------------------|---|---------------|---------|--|----------------|-------------------| | Location | Sample ID | Date | Lab | 8260 | 8270 | 3550 | 5030 | 8310 | 8080 | 8080 | | Chicken Creek | SSCH-1A/2A-0.2 | Apr-93 | α | ND* | ND | 63** | <0.2 | | | | | | SS-Chick-96-1A-0 | Aug-96 | ВС | ND | ND | | | | | | | | SS-Chick-96-2A-0 | | | ND | ND | | | | | | | | SS-Chick-96-3A-0 | | | ND | ND | | a | | | | | | SS-Chick-96-4A-0 |] | | p-isopropyltoluene=0.0058 | ND | | | | | | | | SS-Chick-96-5A-0 | | | ND | ND | | | | | | | | SS-Ckn-98-1-0.0 | Jan-98 | BC | | | | | ND | <0.02 | | | | SS-Ckn-98-2-0.0 | | | | | | | Benzo(a)pyrene=0.075
Chrysene=0.028 | <0.02 | | | | SS-Ckn-98-2A-0.0 | Feb-98 | | | | | | ND | PCB 1254=0.014 | | | | SS-Ckn-98-3-0.0 | Jan-98 | | • | | | | ND | <0.02 | | | | SS-Ckn-98-4-0.0 | Feb-98 | | | | | | ND | <0.01 | | | | SS-Ckn-98-5-0 | Jun-98 | BC | | | | | | | <0.003^ | | | SS-Ckn-98-6-0 | | | | - | | | Lini | | <0.003^ | | | SS-Ckn-98-7-0 | | | | | | | | | <0.003^ | | No Name Creek | SS-Noname-96-1A-0.0 | Aug-96 | ВС | | ND | in the second | | | | | | | SS-Noname-96-2A-0.0 | | | | ND | | | | | | | | SS-Noname-98-1-0.0 | Jan-98 | BC | | | | | | <0.02 | | | | SS-Noname-98-2-0.0 | | | | | | | | <0.02 | | | Ten Inch Creek | SS-Ten In-96-1A-0 | Aug-96 | BC | | ND | | | | | | | | SS-Ten In-96-2A-0 | | | | ND | | | | | | | | SS-Ten In-96-3A-0 | | | | ND | | | | | | | | SS-Ten In-96-4A-0 | _ | | | ND | | | | | | | | SS-Ten In-96-5A-0 | | | | ND | | | | | | | Building 75/69
Storm drain | SS75E-1A-0 | Арг-93 | P/C | ND* | Fluoranthene=0.85
Phenanthrene=0.78
Pyrene=0.88 | 260^^ | | | PCB 1254=0.5 | | BC = Analysis by BC Laboratories Q = Analysis by Quanteq P/C = Analysis by Precision Lab, and Chromalab ^{^ - 8080} analysis only included Aldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and Dieldrin ^{* =} Analyzed by EPA Method 8240 ^{** =} Oil detected M = Analyzed for total extractable petroleum hydrocarbons, reported as motor oil. #### **Table C4.5-3 Surface Water Sampling Results** Metals (Concentrations in µg/L) | | | | Sb | As | Ba | Be | Cd | Cr | Cr6 | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | ٧ | Zn | |----------------|------|--------|---------|-----|-------------------|---------------|-----------|-------|-----|----------|----------|-----------------|--------|--------|-----|------|---------|------|------|----------| | | | MCL: | 6 | 50 | 1000 | 4 | 5 | 50 | | NS | 1000 (a) | 15 (b) | 2 | NS | 100 | 50 | 100 (a) | 2 | NS | 5000 (a) | | LOCATION | LAB | DATE | Chicken Creek | С | Aug-93 | <20 | <5 | 72 | <1 | <1 | <10 | | <10 | 6.0 | <10 | ٧1 | 5
V | <20 | <10 | <5 | <10 | <10 | <5 | | | BC | Jul-94 | <100 | 3.0 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.20 | <10
| <50 | <2 | <10 | <5 | <50 | <50 | | | BC | Aug-95 | <4 | <2 | 110 | <10 | <5 | <10 | | <10 | <10 | 41 | <0.20 | <10 | <50 | <2 | <10 | <5 | <50 | <10 | | | BC | Jan-96 | <4 | 4.0 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.20 | <50 | <50 | <2 | <10 | <5 | <10 | <50 | | | | | <4 | 4.2 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.20 | <50 | <50 | <2 | <10 | <5 | <10 | 65 | | | LBNL | Apr-96 | <50 | 3.4 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.20 | <50 | <50 | <1 | <50 | <50 | <50 | 22 | | | LBNL | Apr-97 | . <4 | 2.6 | 118 | <4 | <5 | <5 | | <5 | <5 | <5 | <0.20 | <50 | <50 | 2.6 | <5 | <1 | <50 | <20 | | | LBNL | Jan-98 | <1 | <2 | 55.8 | SI | <1 | <5 | | <5 | 4.2 | <1 | <0.10 | ं.<5 | <5 | <2 | <1 | <1 | 3.7 | 18.9 | | | LBNL | Apr-99 | <1 | 3.4 | 109 | <1 | <1 | 8.9 | | <1 | 3.4 | <1 | <0.25 | 1.6 | 1.6 | 7.6 | <1 | <1 | 23.1 | 16.4 | | | LBNL | Jan-00 | <1 | <2 | 68.9 | <1 | ₹1 | 1.6 | | <1 | 2.9 | <1 | <0.20 | 1.5 | <1 | <2 | <1' | : <1 | 21.6 | 11.9 | | No Name Creek | BC | Jul-94 | .<100° | 3.0 | 120 | <10 | <5 | <10 | | <10 | 10 | 8 | <0.20 | <10 | <50 | <2 | <10 | <5 | <50 | <50 | | | BC | Aug-95 | <4 | <2 | <100 | <10 | <5 | <10 | | <10 | <10 | <5 | <0.20 | <10 | <50 | <2 | <10 | <5 | <50 | <10 | | | BC | Jan-96 | <4 | 3.0 | <100 | <10 | <10 | <10 | | <50 | <10 | <5 | <0.20 | <50 | <50 | <2 | <10 | <5 | <10 | <50 | | | LBNL | Apr-96 | <50 | 2.9 | <50 | <5 | <40 | <50 | | <50 | <50 | <40 | <0.20 | <50 | <50 | <1 | <50 | <50 | <50 | <20 | | | LBNL | Apr-97 | <4 | 3.2 | 99 | <4 | <5 | 5.9 | | <5 | <5 | <5 | <0.20 | <50 | <50 | <2 | <5 | <1 | <5 | <20 | | | LBNL | Jan-98 | <1 | 3.4 | 51.2 | <1 | 7 | <5 | | <5 | 4.2 | <1 | <0.10 | <5 | <5 | 12.3 | <1 | <1 | 4.2 | <5 | | | LBNL | Apr-99 | . <1 | 2.4 | 109 | 51 7 | ₹1 | 7.4 | | <1. | 1,1 | < 1 | <0.25 | 1.2 | 1.8 | 5.0 | <1 | <1 | 6.1 | <5 | | | LBNL | Jan-00 | <1 | <2 | 80.1 | <1 | <1 | <1 | | <1 | <1 | < 1 | <0.20 | 1.8 | <1 | <2 | <1 | <1 | 3.8 | <5 | | Ten Inch Creek | BC | Aug-95 | <4 | <2 | 110 | <10 | <5. | <10 | | <10 | <10 | 5. <5 | <0.20 | <10 | <50 | <2 | <10. | <5 | <50 | 66 | | | LBNL | Apr-96 | <50 | <2 | ≟ < 50≅ | < 5 | <40 | <50 ∜ | | <50 | <50 | <40 | å<0.20 | <50 | <50 | <1 | <50 | <50 | <50 | <20 | | | LBNL | Jan-98 | <1 | <2 | 41.3 | <1 | 1 5 | <5 | | <5. | 2.3 | <1 | <0.10 | <5 | <5 | <2 | <1 | <1 | 1.4 | 7.7 | | | LBNL | Apr-99 | ::<1::< | <2 | 88.6 | <1 | 41 | 8.1 | | <1 | 1.9 | <1 | g<0.25 | <1 | 1.3 | 5.3 | V | <1 | 2.9 | <5 | | | LBNL | Jan-00 | <1 | <2 | 61.2 | ₹1 | <1 | <1 | | 1 | 4.3 | <1 | <0,20 | <1 | 1.5 | <2 | c۱ | <1 | 1.8 | <5 | MCL: Maximum contaminant level for drinking water (determined by California DTSC) BC = Analysis by BC Laboratories C = Analysis by Chromalab LBNL: Analysis by Lawrence Berkeley National Laboratory = Not detected above quantitation limit = Not analyzed (a): secondary MCL (b): action level NS: Not Specified #### **Table C4.5-4** ### Sediment Sampling Results ### Metals ### (Concentrations in mg/kg) | Location | Sample ID | Date | Lab | Sb | As | Ва | Ве | Cd | Ċr | Cr6 | Co | Cu | Pb | Hg | Мо | Ni | Se | Ag | TI | v | Zn | |---------------------------|---------------------|--------|-----|------------|-------|-----|-------------|------------|----|-----|-----|----|-----|------|-------------------|----|-----|----------|-----|----|-----| | Chicken Creek | SSCH-1/2A-0.2 | Apr-93 | α | <2 | 2 | 83 | <0.2 | 0.5 | 45 | | 9.1 | 34 | 35 | 0.2 | <0.6 | 43 | <2 | 0.5 | <3 | 28 | 150 | | | SS-Chick-96-1A-0 | Aug-96 | BC | <10 | 2.5 | 71 | Ţ | 4 1 | 47 | | 11 | 22 | 9.3 | <0.2 | <5 | 42 | 1.2 | <2 | <10 | 46 | 94 | | | SS-Chick-96-2A-0 | | | <10 | 3.6 | 145 | , | <1 | 44 | | 19 | 19 | 14 | <0.2 | <5 | 59 | 1.2 | <2 | <10 | 48 | 97 | | | SS-Chick-96-3A-0 | | | <10 | 3.1 | 84 | V | <1 | 30 | | 12 | 22 | 15 | 0.21 | . < 5 | 37 | <1 | <2 | <10 | 41 | 114 | | | SS-Chick-96-4A-0 | _ | | <10 | 5.7 | 134 | 17 | 2.2 | 58 | | 14 | 69 | 38 | <0.2 | < 5 | 55 | 1.5 | 47.32-1V | <10 | 49 | 257 | | | SS-Chick-96-5A-0 | | | <10 | 5.0 | 116 | «1 | 1.4 | 52 | | 14 | 35 | 58 | <0.2 | . 54, 5 . / 15. 1 | 54 | 1.2 | <2 | <10 | 58 | 149 | | No Name Creek | SS-Noname-96-1A-0.0 | Aug-96 | BC | <10 | 9.3 | 212 | V | <1 | 36 | | 13 | 66 | 19 | <0.2 | <5 | 43 | 2.4 | <2 | <10 | 51 | 78 | | | SS-Noname-96-2A-0.0 | | | ÷10 | 9.9 | 199 | | | 30 | | 19 | 31 | 24 | <0.2 | <5 | 47 | 2.2 | <2 | <10 | 37 | 86 | | Ten Inch Creek | SS-Ten In-96-1A-0 | Aug-96 | BC | <10 | 5.1 | 103 | 4 1 | <1. | 41 | | 10 | 37 | 22 | <0.2 | <5 | 37 | 1.5 | <2 | <10 | 38 | 81 | | | SS-Ten In-96-2A-0 | | | <10 | 8.0 | 131 | " <1 | <1 | 41 | | 10 | 38 | 44 | <0.2 | <5 | 41 | 1.5 | <2 | <10 | 43 | 89 | | | SS-Ten In-96-3A-0 | | | <10 | 8.0 | 156 | | 4 | 35 | | 13 | 37 | 31 | <0.2 | <5 | 43 | 1.6 | <2 | <10 | 44 | 92 | | | SS-Ten In-96-4A-0 | _ | | <10 | 9.3 | 154 | V | <1 | 37 | | 11 | 37 | 39 | <0.2 | <5 | 42 | 1.9 | <2 | <10 | 41 | 93 | | | SS-Ten In-96-5A-0 | | | <10 | 7.9 | 119 | 7 | <1 | 32 | | 8.5 | 35 | 23 | <0.2 | <5 | 33 | 1.3 | <2 | <10 | 37 | 78 | | Building 75/69 Stormdrain | SS75E-1A-0† | Apr-93 | С | # * | <0.25 | 63 | 0.2 | 3.0 | 40 | | 8.6 | 66 | 160 | 0.46 | 3.1 | 39 | 2.5 | <0:25 | <2 | 23 | 530 | BC = Analysis by BC Laboratories Q = Analysis by Quanteq = Not detected above reporting limit = Not analyzed